Your browser doesn't support javascript.
loading
Cloning and characterization of a hyaluronate lyase EsHyl8 from Escherichia sp. A99.
Cui, Xiuli; Fu, Zheng; Wang, Hainan; Yu, Wengong; Han, Feng.
Afiliación
  • Cui X; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao 266003, China; Shandong Provincial Key Laboratory of Gly
  • Fu Z; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao 266003, China; Shandong Provincial Key Laboratory of Gly
  • Wang H; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao 266003, China; Shandong Provincial Key Laboratory of Gly
  • Yu W; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao 266003, China; Shandong Provincial Key Laboratory of Gly
  • Han F; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao 266003, China; Shandong Provincial Key Laboratory of Gly
Protein Expr Purif ; 223: 106551, 2024 Nov.
Article en En | MEDLINE | ID: mdl-38997076
ABSTRACT
Hyaluronidase, an enzyme that degrades hyaluronic acid (HA), is utilized in clinical settings to facilitate drug diffusion, manage extravasation, and address injection-related complications linked to HA-based fillers. In this study, a novel hyaluronate lyase EsHyl8 was cloned, expressed, and characterized from Escherichia sp. A99 of human intestinal origin. This lyase belongs to polysaccharide lyase (PL) family 8, and showed specific activity towards HA. EsHyl8 exhibited optimal degradation at 40 °C and pH 6.0. EsHyl8 exhibited a high activity of 376.32 U/mg among hyaluronidases of human gut microorganisms. EsHyl8 was stable at 37 °C and remained about 70 % of activity after incubation at 37 °C for 24 h, demonstrating excellent thermostability. The activity of EsHyl8 was inhibited by Zn2+, Cu2+, Fe3+, and SDS. EsHyl8 was an endo-type enzyme whose end-product was unsaturated disaccharide. This study enhances our understanding of hyaluronidases from human gut microorganisms.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Polisacárido Liasas / Clonación Molecular Límite: Humans Idioma: En Revista: Protein Expr Purif Asunto de la revista: BIOLOGIA MOLECULAR Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Polisacárido Liasas / Clonación Molecular Límite: Humans Idioma: En Revista: Protein Expr Purif Asunto de la revista: BIOLOGIA MOLECULAR Año: 2024 Tipo del documento: Article