Your browser doesn't support javascript.
loading
Underwater Single-Photon 3D Reconstruction Algorithm Based on K-Nearest Neighbor.
Wang, Hui; Qiu, Su; Lu, Taoran; Kuang, Yanjin; Jin, Weiqi.
Afiliación
  • Wang H; MOE Key Laboratory of Photoelectronic Imaging Technology and System, Beijing Institute of Technology, Beijing 100081, China.
  • Qiu S; MOE Key Laboratory of Photoelectronic Imaging Technology and System, Beijing Institute of Technology, Beijing 100081, China.
  • Lu T; MOE Key Laboratory of Photoelectronic Imaging Technology and System, Beijing Institute of Technology, Beijing 100081, China.
  • Kuang Y; MOE Key Laboratory of Photoelectronic Imaging Technology and System, Beijing Institute of Technology, Beijing 100081, China.
  • Jin W; MOE Key Laboratory of Photoelectronic Imaging Technology and System, Beijing Institute of Technology, Beijing 100081, China.
Sensors (Basel) ; 24(13)2024 Jul 07.
Article en En | MEDLINE | ID: mdl-39001180
ABSTRACT
The high sensitivity and picosecond time resolution of single-photon avalanche diodes (SPADs) can improve the operational range and imaging accuracy of underwater detection systems. When an underwater SPAD imaging system is used to detect targets, backward-scattering caused by particles in water often results in the poor quality of the reconstructed underwater image. Although methods such as simple pixel accumulation have been proven to be effective for time-photon histogram reconstruction, they perform unsatisfactorily in a highly scattering environment. Therefore, new reconstruction methods are necessary for underwater SPAD detection to obtain high-resolution images. In this paper, we propose an algorithm that reconstructs high-resolution depth profiles of underwater targets from a time-photon histogram by employing the K-nearest neighbor (KNN) to classify multiple targets and the background. The results contribute to the performance of pixel accumulation and depth estimation algorithms such as pixel cross-correlation and ManiPoP. We use public experimental data sets and underwater simulation data to verify the effectiveness of the proposed algorithm. The results of our algorithm show that the root mean square errors (RMSEs) of land targets and simulated underwater targets are reduced by 57.12% and 23.45%, respectively, achieving high-resolution single-photon depth profile reconstruction.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Sensors (Basel) Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Sensors (Basel) Año: 2024 Tipo del documento: Article País de afiliación: China