Your browser doesn't support javascript.
loading
Utilization of Additive Manufacturing Techniques for the Development of a Novel Scaffolds with Magnetic Properties for Potential Application in Enhanced Bone Regeneration.
Orozco-Osorio, Yeison Alejandro; Gaita-Anturi, Angela Victoria; Ossa-Orozco, Claudia Patricia; Arias-Acevedo, María; Uribe, Diego; Paucar, Carlos; Vasquez, Andres Felipe; Saldarriaga, Wilmer; Ramirez, Juan Gabriel; Lopera, Alex; García, Claudia.
Afiliación
  • Orozco-Osorio YA; Universidad Nacional de Colombia sede Medellín, Carrera 65 # 59A-100, Medellin, Antioquia, 050034, Colombia.
  • Gaita-Anturi AV; Universidad de Antioquia, Calle 70 # 52-21, 1226, Medellín, 050010, Colombia.
  • Ossa-Orozco CP; Universidad de Antioquia, Calle 70 # 52-21, 1226, Medellín, 050010, Colombia.
  • Arias-Acevedo M; Instituto Tecnológico Metropolitano, Calle 73 #76A-354, Campus Robledo, Medellín, Antioquia, 50034, Colombia.
  • Uribe D; Instituto Tecnológico Metropolitano, Calle 73 #76A-354, Campus Robledo, Medellín, Antioquia, 50034, Colombia.
  • Paucar C; Universidad Nacional de Colombia sede Medellín, Carrera 65 # 59A-100, Medellin, Antioquia, 050034, Colombia.
  • Vasquez AF; New Stetic, Cra. 53 #50-09, Guarne, Antioquia, 054050, Colombia.
  • Saldarriaga W; Universidad Nacional de Colombia sede Medellín, Carrera 65 # 59A-100, Medellin, Antioquia, 050034, Colombia.
  • Ramirez JG; Universidad Nacional de Colombia sede Medellín, Carrera 65 # 59A-100, Medellin, Antioquia, 050034, Colombia.
  • Lopera A; Grupo de Nanoestructuras y Física Aplicada (NANOUPAR), Universidad Nacional de Colombia, La Paz, 202017, Colombia.
  • García C; Universidad Nacional de Colombia sede Medellín, Carrera 65 # 59A-100, Medellin, Antioquia, 050034, Colombia.
Small ; : e2402419, 2024 Jul 14.
Article en En | MEDLINE | ID: mdl-39004887
ABSTRACT
This study focuses on designing and evaluating scaffolds with essential properties for bone regeneration, such as biocompatibility, macroporous geometry, mechanical strength, and magnetic responsiveness. The scaffolds are made using 3D printing with acrylic resin and iron oxides synthesized through solution combustion. Utilizing triply periodic minimal surfaces (TPMS) geometry and mask stereolithography (MSLA) printing, the scaffolds achieve precise geometrical features. The mechanical properties are enhanced through resin curing, and magnetite particles from synthesized nanoparticles and alluvial magnetite are added for magnetic properties. The scaffolds show a balance between stiffness, porosity, and magnetic responsiveness, with maximum compression strength between 4.8 and 9.2 MPa and Young's modulus between 58 and 174 MPa. Magnetic properties such as magnetic coercivity, remanence, and saturation are measured, with the best results from scaffolds containing synthetic iron oxides at 1% weight. The viscosity of the mixtures used for printing is between 350 and 380 mPas, and contact angles between 90° and 110° are achieved. Biocompatibility tests indicate the potential for clinical trials, though further research is needed to understand the impact of magnetic properties on cellular interactions and optimize scaffold design for specific applications. This integrated approach offers a promising avenue for the development of advanced materials capable of promoting enhanced bone regeneration.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: Colombia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: Colombia