Your browser doesn't support javascript.
loading
rtestim: Time-varying reproduction number estimation with trend filtering.
Liu, Jiaping; Cai, Zhenglun; Gustafson, Paul; McDonald, Daniel J.
Afiliación
  • Liu J; Department of Statistics, The University of British Columbia, Vancouver, British Columbia, Canada.
  • Cai Z; Centre for Health Evaluation and Outcome Sciences, The University of British Columbia, Vancouver, British Columbia, Canada.
  • Gustafson P; Department of Statistics, The University of British Columbia, Vancouver, British Columbia, Canada.
  • McDonald DJ; Department of Statistics, The University of British Columbia, Vancouver, British Columbia, Canada.
PLoS Comput Biol ; 20(8): e1012324, 2024 Aug.
Article en En | MEDLINE | ID: mdl-39106282
ABSTRACT
To understand the transmissibility and spread of infectious diseases, epidemiologists turn to estimates of the instantaneous reproduction number. While many estimation approaches exist, their utility may be limited. Challenges of surveillance data collection, model assumptions that are unverifiable with data alone, and computationally inefficient frameworks are critical limitations for many existing approaches. We propose a discrete spline-based approach that solves a convex optimization problem-Poisson trend filtering-using the proximal Newton method. It produces a locally adaptive estimator for instantaneous reproduction number estimation with heterogeneous smoothness. Our methodology remains accurate even under some process misspecifications and is computationally efficient, even for large-scale data. The implementation is easily accessible in a lightweight R package rtestim.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Número Básico de Reproducción Límite: Humans Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Número Básico de Reproducción Límite: Humans Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: Canadá