Your browser doesn't support javascript.
loading
G-PLIP: Knowledge graph neural network for structure-free protein-ligand bioactivity prediction.
Crouzet, Simon J; Lieberherr, Anja Maria; Atz, Kenneth; Nilsson, Tobias; Sach-Peltason, Lisa; Müller, Alex T; Dal Peraro, Matteo; Zhang, Jitao David.
Afiliación
  • Crouzet SJ; Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland.
  • Lieberherr AM; Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland.
  • Atz K; Swiss Institute of Bioinformatics (SIB), Lausanne, 1015, Switzerland.
  • Nilsson T; Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland.
  • Sach-Peltason L; ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland.
  • Müller AT; Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland.
  • Dal Peraro M; ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
  • Zhang JD; Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland.
Comput Struct Biotechnol J ; 23: 2872-2882, 2024 Dec.
Article en En | MEDLINE | ID: mdl-39108676
ABSTRACT
Protein-ligand interactions (PLIs) determine the efficacy and safety profiles of small molecule drugs. Existing methods rely on either structural information or resource-intensive computations to predict PLI, casting doubt on whether it is possible to perform structure-free PLI predictions at low computational cost. Here we show that a light-weight graph neural network (GNN), trained with quantitative PLIs of a small number of proteins and ligands, is able to predict the strength of unseen PLIs. The model has no direct access to structural information about the protein-ligand complexes. Instead, the predictive power is provided by encoding the entire chemical and proteomic space in a single heterogeneous graph, encapsulating primary protein sequence, gene expression, the protein-protein interaction network, and structural similarities between ligands. This novel approach performs competitively with, or better than, structure-aware models. Our results suggest that existing PLI prediction methods may be improved by incorporating representation learning techniques that embed biological and chemical knowledge.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Comput Struct Biotechnol J Año: 2024 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Comput Struct Biotechnol J Año: 2024 Tipo del documento: Article País de afiliación: Suiza