Electronic and Transport Engineering of A-Type Antiferromagnets with Ferroelectric Sandwich Structure: Toward Multistate Nonvolatile Memory Applications.
Nano Lett
; 24(35): 10776-10782, 2024 Sep 04.
Article
en En
| MEDLINE
| ID: mdl-39166958
ABSTRACT
Achieving higher-order multistates with mutual interstate switching at the nanoscale is essential for high-density storage devices; yet, it remains a significant challenge. Here, we demonstrate that integrating A-type antiferromagnetic semiconductors sandwiched between ferroelectric layers is an effective strategy to achieve high-performance multistate data storage. Taking the Sc2CO2/VSi2P4 bilayer (bi-VSi2P4)/Sc2CO2 van der Waals multiferroic heterostructure as an example, our first-principles calculations show that by switching the polarization direction of the upper and bottom ferroelectric Sc2CO2 layers, antiferromagnetic bi-VSi2P4 can exhibit four distinct states with different band structures. The intriguing band structure engineering stems from the polarization-field-induced band shift and interface charge transfer. Accordingly, the proposed Sc2CO2/bi-VSi2P4/Sc2CO2-based multiferroic device can achieve four different resistance states, accompanied by fully spin-polarized currents and giant tunneling electroresistance ratios. Our results propose a viable strategy for realizing nonvolatile electrical control of antiferromagnets at the nanoscale and provide insights into the development of advanced memories.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
Nano Lett
Año:
2024
Tipo del documento:
Article
País de afiliación:
China