Dry season irrigation promotes nutrient cycling by reorganizing Eucalyptus rhizosphere microbiome.
Sci Total Environ
; 954: 176307, 2024 Sep 14.
Article
en En
| MEDLINE
| ID: mdl-39284445
ABSTRACT
In southern China, seasonal droughts and low soil phosphorus content constrain the productivity of Eucalyptus trees. To understand the rhizosphere microbiome response to the dry season, metagenomic sequencing analysis was used to investigate the 6-year-old Eucalyptus rhizosphere microbiome under four different irrigation and fertilization treatments. The results showed that irrigation and fertilization during the dry season significantly altered the composition of microbiome in the rhizosphere soil of Eucalyptus plantations. The soil physicochemical properties and enzyme activity explained 30.73 % and 29.75 % of the changes in bacterial and fungal community structure in Eucalyptus rhizosphere soil, respectively. Irrigation and fertilization during the dry season significantly altered the physicochemical properties of rhizosphere soil. Compared with the seasonal drought without fertilizer treatment (CK), the dry season irrigation with fertilizer treatment (WF) significantly increased the content of total nitrogen (46.34 %), available nitrogen (37.72 %), available phosphorus (440.9 %), and organic matter (35.34 %). Soil organic matter (OM), pH, and available phosphorus (AP) were key environmental factors influencing the microbial community composition. Moreover, irrigation and fertilization promoted carbon fixation and nitrogen and phosphorus mineralization, increasing soil OM content and the availability of inorganic nitrogen and phosphorus. Meanwhile, compared to the CK, the increase of acid phosphatase (16.81 %), invertase (146.89 %)and urease (59.45 %) in rhizosphere soil under irrigation (W) treatment further proves that dry season irrigation promote the soil carbon, nitrogen and phosphorus cycles. Irrigation and fertilization treatment alleviated the constraints of low phosphorus in southern China's soil, which promoted Eucalyptus productivity. In conclusion, we suggest implementing reasonable irrigation and fertilization strategies in the production practice of Eucalyptus and utilizing microbial resources to improve soil fertility and Eucalyptus productivity.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
Sci Total Environ
Año:
2024
Tipo del documento:
Article
País de afiliación:
China