RESUMEN
Wireworms (Coleoptera: Elateridae) are common insect pests that attack a wide range of economically important crops including potatoes. The control of wireworms is of prime importance in potato production due to the potential damage of the larvae to tuber quantity and quality. Chemical insecticides, the main control strategy against wireworms, generally fail to provide satisfactory control due to the lack of available chemicals and the soil-dwelling habits of the larvae. In the last decades, new eco-friendly concepts have emerged in the sustainable control of wireworms, one of which is entomopathogenic nematodes (EPNs). EPNs are soil-inhabitant organisms and represent an ecological approach to controlling a great variety of soil-dwelling insect pests. In this study, the susceptibility of Agriotes sputator Linnaeus and A. rufipalpis Brullé larvae, the most common wireworm species in potato cultivation in Türkiye, to native EPN strains [Steinernema carpocapsae (Sc_BL22), S. feltiae (Sf_BL24 and Sf_KAY4), and Heterorhabditis bacteriophora (Hb_KAY10 and Hb_AF12)] were evaluated at two temperatures (25 and 30 °C) in pot experiments. Heterorhabditis bacteriophora Hb_AF12 was the most effective strain at 30 °C six days post-inoculation and caused 37.5% mortality to A. rufipalpis larvae. Agriotes sputator larvae were more susceptible to tested EPNs at the same exposure time, and 50% mortality was achieved by two EPNs species, Hb_AF12 and Sc_BL22. All EPN species/strains induced mortality over 70% to both wireworm species at both temperatures at 100 IJs/cm2, 18 days post-treatment. The results suggest that tested EPN species/strains have great potential in the control of A. sputator and A. rufipalpis larvae.
RESUMEN
Several nematode species can be found in different densities in almost any soil ecosystem, and their diversity in those ecosystems depends on numerous reasons, such as climatic conditions and host presence. Cereals are one of the main hosts of plant-parasitic nematodes (PPN), chiefly root-lesion nematodes (RLN, Pratylenchus spp.) and cereal cyst nematodes (CCN, Heterodera spp.). These nematodes are known as major parasites of the cereal crops; however, agricultural areas accommodate various nematodes showing biological variation. The diversity of parasitic nematodes on cereals in the Sakarya provinces of Türkiye, where cereals are intensively grown and located in the middle of two climatic zones, has not been well studied. Therefore, in this study, we aimed to determine the diversity, identification, and molecular phylogeny of PPNs in wheat-growing ecosystems in the Hendek, Pamukova, Geyve, Akyazi, and Central districts of Sakarya. The diversity of PPNs was calculated using the Shannon diversity index. Thirteen PPN genera were detected in 92% of soil samples. Heterodera filipjevi was identified in 24% of the soil samples using morphological, morphometrical, and molecular tools. In the morphological and molecular analyses, intraspecific polymorphism was observed in H. filipjevi populations. The result indicated that the high infestation rate of H. filipjevi was recorded from Geyve and Pamukova, followed by Hendek and Akyazi; however, a low infestation rate was detected in the Central district. The moderate value of the Shannon index of migratory nematode species was obtained in wheat fields as 2.31, whereas the value of evenness was 0.93, implying moderate diversity and high evenness of nematodes. This study is the first comprehensive report on H. filipjevi from wheat cropping areas in the Sakarya province. Intensified cereal cropping systems with/without non-cereal rotations increased the risk of plant-parasitic nematodes, especially RLNs and H. filipjevi infection of wheat production areas in the province.