Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
J Cancer ; 15(6): 1613-1623, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38370383

RESUMEN

Comprehensive analysis of mortality and causes of death (COD) in cancers was of importance to conduct intervention strategies. The current study aimed to investigate the mortality rate and COD among cancers, and to explore the disparities between age. Initially, cancer patients diagnosed between 2010 and 2019 from the surveillance, epidemiology, and end results (SEER) database were extracted. Then, frequencies and percentage of deaths, and mortality rate in different age groups were calculated. Meanwhile, age distribution of different COD across tumor types was illustrated while the standardized mortality ratios (SMR) stratified by age were calculated and visualized. A total of 2,670,403 death records were included and digestive system cancer (688,953 death cases) was the most common primary cancer type. The mortality rate increased by 5.6% annually in total death, 4.0% in cancer-specific death and 10.9% in non-cancer cause. As for cancer-specific death, the age distribution varied among different primary tumor types due to prone age and prognosis of cancer. The top five non-cancer causes in patients older than 50 were cardiovascular and cerebrovascular disease, other causes, COPD and associated conditions, diabetes as well as Alzheimer. The SMRs of these causes were higher among younger patients and gradually dropped in older age groups. Mortality and COD of cancer patients were heterogeneous in age group due to primary tumor types, prone age and prognosis of cancer. Our study conducted that non-cancer COD was a critical part in clinical practice as well as cancer-specific death. Individualized treatment and clinical intervention should be made after fully considering of the risk factor for death in different diagnosis ages and tumor types.

2.
Pharmaceutics ; 16(1)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38258135

RESUMEN

In this study, we described physico-chemical properties of novel nanoformulation of photosensitizer-pyropheophorbide α 17-diethylene glycol ester (XL) (chlorophyll α derivative), revealing insights into antitumor activity and maintaining quality, meeting the pharmaceutical approach of new nanoformulation design. Our formulation, based on poly(lactic-co-glycolic acid) (PLGA) nanoparticles, increased XL solubility and selective tumor-targeted accumulation. In our research, we revealed, for the first time, that XL binding to polyvinyl alcohol (PVA) enhances XL photophysical activity, providing the rationale for PVA application as a stabilizer for nanoformulations. Results of FTIR, DSC, and XRD revealed the physical interactions between XL and excipients, including PVA, indicating that the encapsulation maintained XL binding to PVA. The encapsulated XL exhibited higher photophysical activity compared to non-encapsulated substance, which can be attributed to the influence of residual PVA. Gamma-irradiation led to degradation of XL; however, successful sterilization of the samples was achieved through the filtration. Importantly, the encapsulated and sterilized XL retained cytotoxicity against both 2D and 3D tumor cell models, demonstrating the potential of the formulated NP-XL for photodynamic therapy applications, but lacked the ability to reactivate epigenetically silenced genes. These findings provide valuable insights into the design and characterization of PLGA-based nanoparticles for the encapsulation of photosensitizers.

3.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38139834

RESUMEN

This research presents a novel synthetic photosensitizer for the photodynamic therapy (PDT) of malignant tumors: meso-tetra(3-pyridyl) bacteriochlorin, which absorbs at 747 nm (in the long-wavelength region of the spectrum) and is stable when stored in the dark. H2Py4BC demonstrates pronounced photoinduced activity in vitro against tumor cells of various geneses (IC50 varies from 21 to 68 nM for HEp2, EJ, S37, CT26, and LLC cultured cells) and in vivo provides pronounced antitumor efficacy in the treatment of mice bearing small or large S37, Colo26, or LLC metastatic tumors, as well as in the treatment of rats bearing RS-1 liver cholangioma. As a result, total regression of primary tumor nodules and cure of 40 to 100% of the animals was proven by the experiment criteria, MRI, and histological analysis. Meso-tetra(3-pyridyl) bacteriochlorin quickly penetrates and accumulates in the tumor tissue and internal organs of mice, and after 24 h, 80% of the dye is excreted from the skin in addition to 87-92% from the liver, kidneys, and spleen.

4.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-38004431

RESUMEN

Insufficient drug accumulation in tumors is still a major concern for using cancer nanotherapeutics. Here, the neutrophil-based delivery of three nanoparticle types-liposomes, PLGA, and magnetite nanoparticles-was assessed both in vitro and in vivo. Confocal microscopy and a flow cytometry analysis demonstrated that all the studied nanoparticles interacted with neutrophils from the peripheral blood of mice with 4T1 mammary adenocarcinoma without a significant impact on neutrophil viability or activation state. Intravital microscopy of the tumor microenvironment showed that the neutrophils did not engulf the liposomes after intravenous administration, but facilitated nanoparticle extravasation in tumors through micro- and macroleakages. PLGA accumulated along the vessel walls in the form of local clusters. Later, PLGA nanoparticle-loaded neutrophils were found to cross the vascular barrier and migrate towards the tumor core. The magnetite nanoparticles extravasated in tumors both via spontaneous macroleakages and on neutrophils. Overall, the specific type of nanoparticles largely determined their behavior in blood vessels and their neutrophil-mediated delivery to the tumor. Since neutrophils are the first to migrate to the site of inflammation, they can increase nanodrug delivery effectiveness for nanomedicine application.

5.
J Phys Chem Lett ; 14(40): 9112-9117, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37792541

RESUMEN

The role of the properties of magnetic nanoparticles in the remote magneto-mechanical actuation of biomolecules under the influence of external magnetic fields is still of particular interest. Here, a specially designed strategy based on the mechanical destruction of short oligonucleotide duplexes is used to demonstrate the effect of magnetic nanoparticles with different sizes (5-99 nm) on the magnitude of the magneto-mechanical actuations in a low-frequency alternating magnetic field. The results show that the mechanical destruction of complementary chains of duplexes, caused by the rotational-vibrational movements of nanoparticles upon exposure to a magnetic field, has a nonmonotonic dependence on the nanoparticle core size. The main hypothesis of this phenomenon is associated with a key role of magneto-dipole interactions between individual nanoparticles, which blocks the movements of nanoparticles in dense clusters. This result will allow fine-tuning of the magnetic nanoparticle properties for addressing specific magneto-mechanical tasks.


Asunto(s)
Nanopartículas de Magnetita , Magnetismo , Fenómenos Físicos , Campos Magnéticos
6.
J Funct Biomater ; 14(9)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37754875

RESUMEN

Magnetic nanoparticles based on iron oxide attract researchers' attention due to a wide range of possible applications in biomedicine. As synthesized, most of the magnetic nanoparticles do not form the stable colloidal solutions that are required for the evaluation of their interactions with cells or their efficacy on animal models. For further application in biomedicine, magnetic nanoparticles must be further modified with biocompatible coating. Both the size and shape of magnetic nanoparticles and the chemical composition of the coating have an effect on magnetic nanoparticles' interactions with living objects. Thus, a universal method for magnetic nanoparticles' stabilization in water solutions is needed, regardless of how magnetic nanoparticles were initially synthesized. In this paper, we propose the versatile and highly reproducible ligand exchange technique of coating with 3,4-dihydroxiphenylacetic acid (DOPAC), based on the formation of Fe-O bonds with hydroxyl groups of DOPAC leading to the hydrophilization of the magnetic nanoparticles' surfaces following phase transfer from organic solutions to water. The proposed technique allows for obtaining stable water-colloidal solutions of magnetic nanoparticles with sizes from 21 to 307 nm synthesized by thermal decomposition or coprecipitation techniques. Those stabilized by DOPAC nanoparticles were shown to be efficient in the magnetomechanical actuation of DNA duplexes, drug delivery of doxorubicin to cancer cells, and targeted delivery by conjugation with antibodies. Moreover, the diversity of possible biomedical applications of the resulting nanoparticles was presented. This finding is important in terms of nanoparticle design for various biomedical applications and will reduce nanomedicines manufacturing time, along with difficulties related to comparative studies of magnetic nanoparticles with different magnetic core characteristics.

7.
Int J Mol Sci ; 24(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37628867

RESUMEN

The development of new neurotherapeutics depends on appropriate animal models being chosen in preclinical studies. The cuprizone model is an effective tool for studying demyelination and remyelination processes in the brain, but blood-brain barrier (BBB) integrity in the cuprizone model is still a topic for debate. Several publications claim that the BBB remains intact during cuprizone-induced demyelination; others demonstrate results that could explain the increased BBB permeability. In this study, we aim to analyze the permeability of the BBB for different macromolecules, particularly antibody conjugates, in a cuprizone-induced model of demyelination. We compared the traditional approach using Evans blue injection with subsequent dye extraction and detection of antibody conjugates using magnetic resonance imaging (MRI) and confocal microscopy to analyze BBB permeability in the cuprizone model. First, we validated our model of demyelination by performing T2-weighted MRI, diffusion tensor imaging, quantitative rt-PCR to detect changes in mRNA expression of myelin basic protein and proteolipid protein, and Luxol fast blue histological staining of myelin. Intraperitoneal injection of Evans blue did not result in any differences between the fluorescent signal in the brain of healthy and cuprizone-treated mice (IVIS analysis with subsequent dye extraction). In contrast, intravenous injection of antibody conjugates (anti-GFAP or non-specific IgG) after 4 weeks of a cuprizone diet demonstrated accumulation in the corpus callosum of cuprizone-treated mice both by contrast-enhanced MRI (for gadolinium-labeled antibodies) and by fluorescence microscopy (for Alexa488-labeled antibodies). Our results suggest that the methods with better sensitivity could detect the accumulation of macromolecules (such as fluorescent-labeled or gadolinium-labeled antibody conjugates) in the brain, suggesting a local BBB disruption in the demyelinating area. These findings support previous investigations that questioned BBB integrity in the cuprizone model and demonstrate the possibility of delivering antibody conjugates to the corpus callosum of cuprizone-treated mice.


Asunto(s)
Enfermedades Desmielinizantes , Inmunoconjugados , Animales , Ratones , Cuprizona/toxicidad , Barrera Hematoencefálica , Imagen de Difusión Tensora , Azul de Evans , Gadolinio , Anticuerpos , Colorantes , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/diagnóstico por imagen
8.
Biosensors (Basel) ; 13(7)2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37504132

RESUMEN

New styryl dyes consisting of N-methylpyridine or N-methylquinoline scaffolds were synthesized, and their binding affinities for DNA in cell-free solution were studied. The replacement of heterocyclic residue from the pyridine to quinoline group as well as variation in the phenyl part strongly influenced their binding modes, binding affinities, and spectroscopic responses. Biological experiments showed the low toxicity of the obtained dyes and their applicability as selective dyes for mitochondria in living cells.


Asunto(s)
ADN , Colorantes Fluorescentes , Humanos , Colorantes Fluorescentes/química , ADN/química , Mitocondrias/metabolismo , Microscopía Fluorescente , Células HeLa
9.
Biochemistry (Mosc) ; 88(1): 35-49, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37068871

RESUMEN

In 1994 a new class of prokaryotic compartments was discovered, collectively called "encapsulins" or "nanocompartments". Encapsulin shell protomer proteins self-assemble to form icosahedral structures of various diameters (24-42 nm). Inside of nanocompartments shells, one or several cargo proteins, diverse in their functions, can be encapsulated. In addition, non-native cargo proteins can be loaded into nanocompartments, and shell surfaces can be modified via various compounds, which makes it possible to create targeted drug delivery systems, labels for optical and MRI imaging, and to use encapsulins as bioreactors. This review describes a number of strategies of encapsulins application in various fields of science, including biomedicine and nanobiotechnologies.


Asunto(s)
Proteínas Bacterianas , Biotecnología , Proteínas Bacterianas/metabolismo , Células Procariotas/metabolismo , Subunidades de Proteína , Sistemas de Liberación de Medicamentos
10.
Nanomaterials (Basel) ; 13(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36903693

RESUMEN

Nowadays, magnetoelectric nanomaterials are on their way to finding wide applications in biomedicine for various cancer and neurological disease treatment, which is mainly restricted by their relatively high toxicity and complex synthesis. This study for the first time reports novel magnetoelectric nanocomposites of CoxFe3-xO4-BaTiO3 series with tuned magnetic phase structures, which were synthesized via a two-step chemical approach in polyol media. The magnetic CoxFe3-xO4 phases with x = 0.0, 0.5, and 1.0 were obtained by thermal decomposition in triethylene glycol media. The magnetoelectric nanocomposites were synthesized by the decomposition of barium titanate precursors in the presence of a magnetic phase under solvothermal conditions and subsequent annealing at 700 °C. X-ray diffraction revealed the presence of both spinel and perovskite phases after annealing with average crystallite sizes in the range of 9.0-14.5 nm. Transmission electron microscopy data showed two-phase composite nanostructures consisting of ferrites and barium titanate. The presence of interfacial connections between magnetic and ferroelectric phases was confirmed by high-resolution transmission electron microscopy. Magnetization data showed expected ferrimagnetic behavior and σs decrease after the nanocomposite formation. Magnetoelectric coefficient measurements after the annealing showed non-linear change with a maximum of 89 mV/cm*Oe with x = 0.5, 74 mV/cm*Oe with x = 0, and a minimum of 50 mV/cm*Oe with x = 0.0 core composition, that corresponds with the coercive force of the nanocomposites: 240 Oe, 89 Oe and 36 Oe, respectively. The obtained nanocomposites show low toxicity in the whole studied concentration range of 25-400 µg/mL on CT-26 cancer cells. The synthesized nanocomposites show low cytotoxicity and high magnetoelectric effects, therefore they can find wide applications in biomedicine.

11.
Life (Basel) ; 13(2)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36836645

RESUMEN

Systemic transplantation of mesenchymal stem cells (MSCs) is a promising approach for the treatment of ischemia-associated disorders, including stroke. However, exact mechanisms underlying its beneficial effects are still debated. In this respect, studies of the transplanted cells distribution and homing are indispensable. We proposed an MRI protocol which allowed us to estimate the dynamic distribution of single superparamagnetic iron oxide labeled MSCs in live ischemic rat brain during intravenous transplantation after the transient middle cerebral artery occlusion. Additionally, we evaluated therapeutic efficacy of cell therapy in this rat stroke model. According to the dynamic MRI data, limited numbers of MSCs accumulated diffusely in the brain vessels starting at the 7th minute from the onset of infusion, reached its maximum by 29 min, and gradually eliminated from cerebral circulation during 24 h. Despite low numbers of cells entering brain blood flow and their short-term engraftment, MSCs transplantation induced long lasting improvement of the neurological deficit, but without acceleration of the stroke volume reduction compared to the control animals during 14 post-transplantation days. Taken together, these findings indicate that MSCs convey their positive action by triggering certain paracrine mechanisms or cell-cell interactions or invoking direct long-lasting effects on brain vessels.

12.
J Funct Biomater ; 13(4)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36547554

RESUMEN

Fixation screws and other temporary magnesium alloy fixation devices are used in orthopedic practice because of their biodegradability, biocompatibility and acceptable biodegradation rates. The substitution of dissolving implant by tissues during the healing process is one of the main requirements for biodegradable implants. Previously, clinical tests showed the effectiveness of Ga ions on bone tissue regeneration. This work is the first systematic study on the corrosion rate and biocompatibility of Mg-Zn-Ga-(Y) alloys prepared by hot extrusion, where Ga is an additional major alloying element, efficient as a bone-resorption inhibitor. Most investigated alloys have a low corrosion rate in Hanks' solution close to ~0.2 mm/year. No cytotoxic effects of Mg-2Zn-2Ga (wt.%) alloy on MG63 cells were observed. Thus, considering the high corrosion resistance and good biocompatibility, the Mg-2Zn-2Ga alloy is possible for applications in osteosynthesis implants with improved bone tissue regeneration ability.

13.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36555233

RESUMEN

Introducing a new genetically encoded material containing a photoactivatable label as a model cargo protein, based on Myxococcus xanthus (Mx) encapsulin system stably expressed in human 293T cells. Encapsulin from Mx is known to be a protein-based container for a ferritin-like cargo in its shell which could be replaced with an exogenous cargo protein, resulting in a modified encapsulin system. We replaced Mx natural cargo with a foreign photoactivatable mCherry (PAmCherry) fluorescent protein and isolated encapsulins, containing PAmCherry, from 293T cells. Isolated Mx encapsulin shells containing photoactivatable label can be internalized by macrophages, wherein the PAmCherry fluorescent signal remains clearly visible. We believe that a genetically encoded nanocarrier system obtained in this study, can be used as a platform for controllable delivery of protein/peptide therapeutics in vitro.


Asunto(s)
Proteínas Bacterianas , Myxococcus xanthus , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo
14.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36430704

RESUMEN

Glioma is the most common type of primary CNS tumor, composed of cells that resemble normal glial cells. Recent genetic studies have provided insight into the inter-tumoral heterogeneity of gliomas, resulting in the updated 2021 WHO classification of gliomas. Thorough understanding of inter-tumoral heterogeneity has already improved the prognosis and treatment outcomes of some types of gliomas. Currently, the challenge for researchers is to study the intratumoral cell heterogeneity of newly defined glioma subtypes. Cancer stem cells (CSCs) present in gliomas and many other tumors are an example of intratumoral heterogeneity of great importance. In this review, we discuss the modern concept of glioma stem cells and recent single-cell sequencing-driven progress in the research of intratumoral glioma cell heterogeneity. The particular emphasis was placed on the recently revealed variations of the cell composition of the subtypes of the adult-type diffuse gliomas, including astrocytoma, oligodendroglioma and glioblastoma. The novel data explain the inconsistencies in earlier glioma stem cell research and also provide insight into the development of more effective targeted therapy and the cell-based immunotherapy of gliomas. Separate sections are devoted to the description of single-cell sequencing approach and its role in the development of cell-based immunotherapies for glioma.


Asunto(s)
Astrocitoma , Glioblastoma , Glioma , Oligodendroglioma , Humanos , Glioma/genética , Glioma/terapia , Glioma/patología , Oligodendroglioma/patología , Glioblastoma/patología , Astrocitoma/patología , Células Madre Neoplásicas/patología
15.
Photodiagnosis Photodyn Ther ; 40: 103202, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36400167

RESUMEN

Efficient screening of photosensitizers (PS) as well as studying their photodynamic activity, especially PS excited in the near-infrared region, require informative in vitro models to adequately reflect the architecture, thickness, and intercellular interactions in tumors. In our study, we used spheroids formed from human colon cancer HCT-116 cells and liver cancer Huh7 cells to assess the phototoxicity of a new PS based on tetracationic derivative of synthetic bacteriochlorin (BC4). We optimized conditions for the irradiation regime based on the kinetics of BC4 accumulation in spheroids and kinetics of spheroid growth. Although PS accumulated more efficiently in HCT-116 cells, characterized by more aggressive growth and high proliferative potential, they were less susceptible to the photodynamic therapy (PDT) compared to the slower growing Huh7 cells. We also showed that 3D models of spheroids were less sensitive to BC4 than conventional 2D cultures with relatively identical kinetics of drug accumulation. Our findings suggest that BC4 is a perspective agent for photodynamic therapy against cancer cells.


Asunto(s)
Neoplasias del Colon , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Neoplasias del Colon/tratamiento farmacológico , Células HCT116 , Línea Celular Tumoral , Hígado
16.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36232435

RESUMEN

The magneto-mechanical approach is a powerful technique used in many different applications in biomedicine, including remote control enzyme activity, cell receptors, cancer-selective treatments, mechanically-activated drug releases, etc. This approach is based on the use of a combination of magnetic nanoparticles and external magnetic fields that have led to the movement of such nanoparticles with torques and forces (enough to change the conformation of biomolecules or even break weak chemical bonds). However, despite many theoretical and experimental works on this topic, it is difficult to predict the magneto-mechanical effects in each particular case, while the important results are scattered and often cannot be translated to other experiments. The main reason is that the magneto-mechanical effect is extremely sensitive to changes in any parameter of magnetic nanoparticles and the environment and changes in the parameters of the applied magnetic field. Thus, in this review, we (1) summarize and propose a simplified theoretical explanation of the main factors affecting the efficiency of the magneto-mechanical approach; (2) discuss the nature of the MNP-mediated mechanical forces and their order of magnitude; (3) show some of the main applications of the magneto-mechanical approach in the control over the properties of biological systems.


Asunto(s)
Campos Magnéticos , Nanopartículas , Magnetismo
17.
J Bone Oncol ; 35: 100443, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35815184

RESUMEN

Background: Over the past few decades, a vast number of articles focused on bone metastasis have been published. Bibliometric analysis is helpful to determine the qualities and characteristics and to reveal the influential articles in this field. Methods: All the databases in Web of Science were utilized to identify articles published from 1961 to 2020. The top 100 most cited articles on bone metastases were involved for degree centrality analysis and analyses on publication time and citations, journals, authors, geographical distribution, research institutions, and research keywords. Results: The selected articles were published mainly from 1986 to 2015. The 100 most cited articles were selected from a total of 67,451 citations out of 90,502 publications with a density of 50.239 citations/year. Citations per article ranged from 357 to 2167. The leading country was USA, followed by Canada and United Kingdom. The most frequently studied themes were clinical management of bone metastasis from different malignancy origins. A co-authorship analysis revealed an intense collaborative activity between countries and institutions. Conclusions: This study identified the top 100 most cited articles on bone metastasis. Publication time, area, and theme distribution were thoroughly analyzed. The present study highlighted some of the most influential contributions to the field. Clinical and academic communities have shown a sustained interest in the management of bone metastasis.

18.
Biomedicines ; 10(7)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35885002

RESUMEN

Hepatotoxicity remains an as yet unsolved problem for adenovirus (Ad) cancer therapy. The toxic effects originate both from rapid Kupffer cell (KCs) death (early phase) and hepatocyte transduction (late phase). Several host factors and capsid components are known to contribute to hepatotoxicity, however, the complex interplay between Ad and liver cells is not fully understood. Here, by using intravital microscopy, we aimed to follow the infection and immune response in mouse liver from the first minutes up to 72 h post intravenous injection of three Ads carrying delta-24 modification (Ad5-RGD, Ad5/3, and Ad5/35). At 15-30 min following the infusion of Ad5-RGD and Ad5/3 (but not Ad5/35), the virus-bound macrophages demonstrated signs of zeiosis: the formation of long-extended protrusions and dynamic membrane blebbing with the virus release into the blood in the membrane-associated vesicles. Although real-time imaging revealed interactions between the neutrophils and virus-bound KCs within minutes after treatment, and long-term contacts of CD8+ T cells with transduced hepatocytes at 24-72 h, depletion of neutrophils and CD8+ T cells affected neither rate nor dynamics of liver infection. Ad5-RGD failed to complete replicative cycle in hepatocytes, and transduced cells remained impermeable for propidium iodide, with a small fraction undergoing spontaneous apoptosis. In Ad5-RGD-immune mice, the virus neither killed KCs nor transduced hepatocytes, while in the setting of hepatic regeneration, Ad5-RGD enhanced liver transduction. The clinical and biochemical signs of hepatotoxicity correlated well with KC death, but not hepatocyte transduction. Real-time in vivo tracking for dynamic interactions between virus and host cells provides a better understanding of mechanisms underlying Ad-related hepatotoxicity.

19.
Nanomaterials (Basel) ; 12(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35808003

RESUMEN

Mitochondrial uncoupler 2,4-dinitrophenol (2,4-DNP) is a promising antidiabetic and antiobesity agent. Its clinical use is limited by a narrow dynamic range and accumulation in non-target sensitive organs, which results in whole-body toxicity. A liposomal formulation could enable the mentioned drawbacks to be overcome and simplify the liver-targeted delivery and sustained release of 2,4-DNP. We synthesized 2,4-DNP esters with carboxylic acids of various lipophilic degrees using carboxylic acid chloride and then loaded them into liposomes. We demonstrated the effective increase in the entrapment of 2,4-DNP into liposomes when esters were used. Here, we examined the dependence of the sustained release of 2,4-DNP from liposomes on the lipid composition and LogPoct of the ester. We posit that the optimal chain length of the ester should be close to the palmitic acid and the lipid membrane should be composed of phospholipids with a certain phase transition point depending on the desired release rate. The increased effect of the ATP synthesis inhibition of the liposomal forms of caproic and palmitic acid esters compared to free molecules in liver hepatocytes was demonstrated. The liposomes' stability could well be responsible for this result. This work demonstrates promising possibilities for the liver-targeted delivery of the 2,4-DNP esters with carboxylic acids loaded into liposomes for ATP synthesis inhibition.

20.
J Med Chem ; 65(12): 8227-8244, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35675651

RESUMEN

We report herein the design, synthesis, and biological investigation of a series of novel Pt(IV) prodrugs with non-steroidal anti-inflammatory drugs naproxen, diclofenac, and flurbiprofen, as well as these with stearic acid in the axial position. Six Pt(IV) prodrugs 5-10 were designed, which showed superior antiproliferative activity compared to cisplatin as well as an ability to overcome tumor cell line resistance to cisplatin. By tuning the drug lipophilicity via variation of the axial ligands, the most potent Pt(IV) prodrug 7 was obtained, with an enhanced cellular accumulation of up to 153-fold that of cisplatin and nanomolar cytotoxicity both in 2D and 3D cell cultures. Pt2+ species were detected at different depths of MCF-7 spheroids after incubation with Pt(IV) prodrugs using a Pt-coated carbon nanoelectrode. Cisplatin accumulation in vivo in the murine mammary EMT6 tumor tissue of BALB/c mice after Pt(IV) prodrug injection was proved electrochemically as well. The drug tolerance study on BALB/c mice showed good tolerance of 7 in doses up to 8 mg/kg.


Asunto(s)
Antiinflamatorios no Esteroideos , Antineoplásicos , Compuestos de Platino , Profármacos , Animales , Antiinflamatorios no Esteroideos/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Cisplatino/farmacología , Diseño de Fármacos , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Compuestos de Platino/farmacología , Profármacos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA