Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Ecol Resour ; 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37548515

RESUMEN

Environmental DNA (eDNA) metabarcoding has gained growing attention as a strategy for monitoring biodiversity in ecology. However, taxa identifications produced through metabarcoding require sophisticated processing of high-throughput sequencing data from taxonomically informative DNA barcodes. Various sets of universal and taxon-specific primers have been developed, extending the usability of metabarcoding across archaea, bacteria and eukaryotes. Accordingly, a multitude of metabarcoding data analysis tools and pipelines have also been developed. Often, several developed workflows are designed to process the same amplicon sequencing data, making it somewhat puzzling to choose one among the plethora of existing pipelines. However, each pipeline has its own specific philosophy, strengths and limitations, which should be considered depending on the aims of any specific study, as well as the bioinformatics expertise of the user. In this review, we outline the input data requirements, supported operating systems and particular attributes of thirty-two amplicon processing pipelines with the goal of helping users to select a pipeline for their metabarcoding projects.

2.
Sci Adv ; 8(50): eabq8652, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36525503

RESUMEN

Bacterial membranes are composed of fatty acids (FAs) ester-linked to glycerol-3-phosphate, while archaea have membranes made of isoprenoid chains ether-linked to glycerol-1-phosphate. Many archaeal species organize their membrane as a monolayer of membrane-spanning lipids (MSLs). Exceptions to this "lipid divide" are the production by some bacterial species of (ether-bound) MSLs, formed by tail-to-tail condensation of FAs resulting in the formation of (iso) diabolic acids (DAs), which are the likely precursors of paleoclimatological relevant branched glycerol dialkyl glycerol tetraether molecules. However, the enzymes responsible for their production are unknown. Here, we report the discovery of bacterial enzymes responsible for the condensation reaction of FAs and for ether bond formation and confirm that the building blocks of iso-DA are branched iso-FAs. Phylogenomic analyses of the key biosynthetic genes reveal a much wider diversity of potential MSL (ether)-producing bacteria than previously thought, with importantt implications for our understanding of the evolution of lipid membranes.


Asunto(s)
Éter , Glicerol , Archaea/genética , Archaea/química , Bacterias , Lípidos de la Membrana/química , Éteres/química , Ácidos Grasos , Fosfatos
3.
Front Microbiol ; 12: 673553, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220756

RESUMEN

Plastic particles in the ocean are typically covered with microbial biofilms, but it remains unclear whether distinct microbial communities colonize different polymer types. In this study, we analyzed microbial communities forming biofilms on floating microplastics in a bay of the island of Elba in the Mediterranean Sea. Raman spectroscopy revealed that the plastic particles mainly comprised polyethylene (PE), polypropylene (PP), and polystyrene (PS) of which polyethylene and polypropylene particles were typically brittle and featured cracks. Fluorescence in situ hybridization and imaging by high-resolution microscopy revealed dense microbial biofilms on the polymer surfaces. Amplicon sequencing of the 16S rRNA gene showed that the bacterial communities on all plastic types consisted mainly of the orders Flavobacteriales, Rhodobacterales, Cytophagales, Rickettsiales, Alteromonadales, Chitinophagales, and Oceanospirillales. We found significant differences in the biofilm community composition on PE compared with PP and PS (on OTU and order level), which shows that different microbial communities colonize specific polymer types. Furthermore, the sequencing data also revealed a higher relative abundance of archaeal sequences on PS in comparison with PE or PP. We furthermore found a high occurrence, up to 17% of all sequences, of different hydrocarbon-degrading bacteria on all investigated plastic types. However, their functioning in the plastic-associated biofilm and potential role in plastic degradation needs further assessment.

4.
Front Genet ; 11: 489357, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329686

RESUMEN

Marker gene sequencing of the rRNA operon (16S, 18S, ITS) or cytochrome c oxidase I (CO1) is a popular means to assess microbial communities of the environment, microbiomes associated with plants and animals, as well as communities of multicellular organisms via environmental DNA sequencing. Since this technique is based on sequencing a single gene, or even only parts of a single gene rather than the entire genome, the number of reads needed per sample to assess the microbial community structure is lower than that required for metagenome sequencing. This makes marker gene sequencing affordable to nearly any laboratory. Despite the relative ease and cost-efficiency of data generation, analyzing the resulting sequence data requires computational skills that may go beyond the standard repertoire of a current molecular biologist/ecologist. We have developed Cascabel, a scalable, flexible, and easy-to-use amplicon sequence data analysis pipeline, which uses Snakemake and a combination of existing and newly developed solutions for its computational steps. Cascabel takes the raw data as input and delivers a table of operational taxonomic units (OTUs) or Amplicon Sequence Variants (ASVs) in BIOM and text format and representative sequences. Cascabel is a highly versatile software that allows users to customize several steps of the pipeline, such as selecting from a set of OTU clustering methods or performing ASV analysis. In addition, we designed Cascabel to run in any linux/unix computing environment from desktop computers to computing servers making use of parallel processing if possible. The analyses and results are fully reproducible and documented in an HTML and optional pdf report. Cascabel is freely available at Github: https://github.com/AlejandroAb/CASCABEL.

5.
Environ Microbiol ; 22(2): 766-782, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31814267

RESUMEN

Methanotrophic bacteria play a key role in limiting methane emissions from lakes. It is generally assumed that methanotrophic bacteria are mostly active at the oxic-anoxic transition zone in stratified lakes, where they use oxygen to oxidize methane. Here, we describe a methanotroph of the genera Methylobacter that is performing high-rate (up to 72 µM day-1 ) methane oxidation in the anoxic hypolimnion of the temperate Lacamas Lake (Washington, USA), stimulated by both nitrate and sulfate addition. Oxic and anoxic incubations both showed active methane oxidation by a Methylobacter species, with anoxic rates being threefold higher. In anoxic incubations, Methylobacter cell numbers increased almost two orders of magnitude within 3 days, suggesting that this specific Methylobacter species is a facultative anaerobe with a rapid response capability. Genomic analysis revealed adaptations to oxygen-limitation as well as pathways for mixed-acid fermentation and H2 production. The denitrification pathway was incomplete, lacking the genes narG/napA and nosZ, allowing only for methane oxidation coupled to nitrite-reduction. Our data suggest that Methylobacter can be an important driver of the conversion of methane in oxygen-limited lake systems and potentially use alternative electron acceptors or fermentation to remain active under oxygen-depleted conditions.


Asunto(s)
Lagos/microbiología , Metano/metabolismo , Methylococcaceae/metabolismo , Nitratos/análisis , Sulfatos/análisis , Anaerobiosis/fisiología , Desnitrificación/genética , Methylococcaceae/crecimiento & desarrollo , Nitritos/análisis , Oxidación-Reducción , Oxígeno/metabolismo , Washingtón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA