Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
NPJ Precis Oncol ; 8(1): 149, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39025958

RESUMEN

Gliomas are the most common primary brain tumor and are uniformly lethal. Despite significant advancements in understanding the genetic landscape of gliomas, standard-of-care has remained largely unchanged. Subsets of gliomas are defined by gain-of-function mutations in the metabolic genes encoding isocitrate dehydrogenase (IDH). Efforts to exploit mutant IDH activity and/or directly inhibit it with mutant IDH inhibitors have been the focus of over a decade of research. The recently published INDIGO trial, demonstrating the benefit of the mutant IDH inhibitor vorasidenib in patients with low-grade IDH-mutant gliomas, introduces a new era of precision medicine in brain tumors that is poised to change standard-of-care. In this review, we highlight and contextualize the results of the INDIGO trial and introduce key questions whose answers will guide how mutant IDH inhibitors may be used in the clinic. We discuss possible combination therapies with mutant IDH inhibition and future directions for clinical and translational research.

2.
Acta Neuropathol ; 148(1): 5, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012509

RESUMEN

In recent years, the classification of adult-type diffuse gliomas has undergone a revolution, wherein specific molecular features now represent defining diagnostic criteria of IDH-wild-type glioblastomas, IDH-mutant astrocytomas, and IDH-mutant 1p/19q-codeleted oligodendrogliomas. With the introduction of the 2021 WHO CNS classification, additional molecular alterations are now integrated into the grading of these tumors, given equal weight to traditional histologic features. However, there remains a great deal of heterogeneity in patient outcome even within these established tumor subclassifications that is unexplained by currently codified molecular alterations, particularly in the IDH-mutant astrocytoma category. There is also significant intercellular genetic and epigenetic heterogeneity and plasticity with resulting phenotypic heterogeneity, making these tumors remarkably adaptable and robust, and presenting a significant barrier to the design of effective therapeutics. Herein, we review the mechanisms and consequences of genetic and epigenetic instability, including chromosomal instability (CIN), microsatellite instability (MSI)/mismatch repair (MMR) deficits, and epigenetic instability, in the underlying biology, tumorigenesis, and progression of IDH-mutant astrocytomas. We also discuss the contribution of recent high-resolution transcriptomics studies toward defining tumor heterogeneity with single-cell resolution. While intratumoral heterogeneity is a well-known feature of diffuse gliomas, the contribution of these various processes has only recently been considered as a potential driver of tumor aggressiveness. CIN has an independent, adverse effect on patient survival, similar to the effect of histologic grade and homozygous CDKN2A deletion, while MMR mutation is only associated with poor overall survival in univariate analysis but is highly correlated with higher histologic/molecular grade and other aggressive features. These forms of genomic instability, which may significantly affect the natural progression of these tumors, response to therapy, and ultimately clinical outcome for patients, are potentially measurable features which could aid in diagnosis, grading, prognosis, and development of personalized therapeutics.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Progresión de la Enfermedad , Epigénesis Genética , Isocitrato Deshidrogenasa , Mutación , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Astrocitoma/genética , Astrocitoma/patología , Isocitrato Deshidrogenasa/genética , Mutación/genética , Epigénesis Genética/genética
3.
Clin Cancer Res ; 30(14): 2860-2861, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38652677

RESUMEN

The diagnosis and classification of glioma by liquid biopsy represent a critical unmet need in neuro-oncology. A recent study demonstrates targeted next-generation sequencing of cell-free DNA from cerebrospinal fluid as an evolving option for liquid biopsy in patients with glioma. See related article by Iser et al., p. 2974.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Encefálicas , Ácidos Nucleicos Libres de Células , Glioma , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Biopsia Líquida/métodos , Glioma/genética , Glioma/diagnóstico , Glioma/patología , Glioma/clasificación , Biomarcadores de Tumor/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/clasificación , ADN Tumoral Circulante/genética
4.
bioRxiv ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38328251

RESUMEN

Purpose: Despite significant advances in the treatment paradigm for patients with metastatic melanoma, melanoma brain metastasis (MBM) continues to represent a significant treatment challenge. The study of MBM is limited, in part, by shortcomings in existing preclinical models. Surgically eXplanted Organoids (SXOs) are ex vivo, three-dimensional cultures prepared from primary tissue samples with minimal processing that recapitulate genotypic and phenotypic features of parent tumors and are grown without artificial extracellular scaffolding. We aimed to develop the first matched patient-derived SXO and cell line models of MBM to investigate responses to targeted therapy. Methods: MBM SXOs were created by a novel protocol incorporating techniques for establishing glioma and cutaneous melanoma organoids. A BRAFV600K-mutant and BRAF-wildtype MBM sample were collected directly from the operating room for downstream experiments. Organoids were cultured in an optimized culture medium without an artificial extracellular scaffold. Concurrently, matched patient-derived cell lines were created. Drug screens were conducted to assess treatment response in SXOs and cell lines. Results: Organoid growth was observed within 3-4 weeks, and MBM SXOs retained histological features of the parent tissue, including pleomorphic epithelioid cells with abundant cytoplasm, large nuclei, focal melanin accumulation, and strong SOX10 positivity. After sufficient growth, organoids could be manually parcellated to increase the number of replicates. Matched SXOs and cell lines demonstrated sensitivity to BRAF and MEK inhibitors. Conclusion: Here, we describe the creation of a scaffold-free organoid model of MBM. Further study using SXOs may improve the translational relevance of preclinical studies and enable the study of the metastatic melanoma tumor microenvironment.

5.
Cell Rep ; 43(1): 113557, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38113141

RESUMEN

Metabolic reprogramming in pediatric diffuse midline glioma is driven by gene expression changes induced by the hallmark histone mutation H3K27M, which results in aberrantly permissive activation of oncogenic signaling pathways. Previous studies of diffuse midline glioma with altered H3K27 (DMG-H3K27a) have shown that the RAS pathway, specifically through its downstream kinase, extracellular-signal-related kinase 5 (ERK5), is critical for tumor growth. Further downstream effectors of ERK5 and their role in DMG-H3K27a metabolic reprogramming have not been explored. We establish that ERK5 is a critical regulator of cell proliferation and glycolysis in DMG-H3K27a. We demonstrate that ERK5 mediates glycolysis through activation of transcription factor MEF2A, which subsequently modulates expression of glycolytic enzyme PFKFB3. We show that in vitro and mouse models of DMG-H3K27a are sensitive to the loss of PFKFB3. Multi-targeted drug therapy against the ERK5-PFKFB3 axis, such as with small-molecule inhibitors, may represent a promising therapeutic approach in patients with pediatric diffuse midline glioma.


Asunto(s)
Glioma , Histonas , Animales , Niño , Humanos , Ratones , Quinasas MAP Reguladas por Señal Extracelular , Glioma/genética , Glucólisis , Histonas/genética , Fosfofructoquinasa-2 , Monoéster Fosfórico Hidrolasas , Transducción de Señal
6.
Neurooncol Adv ; 5(1): vdad085, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37554222

RESUMEN

Background: Mutations in mismatch repair (MMR) genes (MSH2, MSH6, MLH1, and PMS2) are associated with microsatellite instability and a hypermutator phenotype in numerous systemic cancers, and germline MMR mutations have been implicated in multi-organ tumor syndromes. In gliomas, MMR mutations can function as an adaptive response to alkylating chemotherapy, although there are well-documented cases of germline and sporadic mutations, with detrimental effects on patient survival. Methods: The clinical, pathologic, and molecular features of 18 IDH-mutant astrocytomas and 20 IDH-wild-type glioblastomas with MMR mutations in the primary tumor were analyzed in comparison to 361 IDH-mutant and 906 IDH-wild-type tumors without MMR mutations. In addition, 12 IDH-mutant astrocytomas and 18 IDH-wild-type glioblastomas that developed MMR mutations between initial presentation and tumor recurrence were analyzed in comparison to 50 IDH-mutant and 104 IDH-wild-type cases that remained MMR-wild-type at recurrence. Results: In both IDH-mutant astrocytoma and IDH-wild-type glioblastoma cohorts, the presence of MMR mutation in primary tumors was associated with significantly higher tumor mutation burden (TMB) (P < .0001); however, MMR mutations only resulted in worse overall survival in the IDH-mutant astrocytomas (P = .0069). In addition, gain of MMR mutation between the primary and recurrent surgical specimen occurred more frequently with temozolomide therapy (P = .0073), and resulted in a substantial increase in TMB (P < .0001), higher grade (P = .0119), and worse post-recurrence survival (P = .0022) in the IDH-mutant astrocytoma cohort. Conclusions: These results suggest that whether present initially or in response to therapy, MMR mutations significantly affect TMB but appear to only influence the clinical outcome in IDH-mutant astrocytoma subsets.

7.
bioRxiv ; 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37398280

RESUMEN

Purpose: Metabolism within the tumor microenvironment (TME) represents an increasing area of interest to understand glioma initiation and progression. Stable isotope tracing is a technique critical to the study of tumor metabolism. Cell culture models of this disease are not routinely cultured under physiologically relevant nutrient conditions and do not retain cellular heterogeneity present in the parental TME. Moreover, in vivo, stable isotope tracing in intracranial glioma xenografts, the gold standard for metabolic investigation, is time consuming and technically challenging. To provide insights into glioma metabolism in the presence of an intact TME, we performed stable isotope tracing analysis of patient-derived, heterocellular Surgically eXplanted Organoid (SXO) glioma models in human plasma-like medium (HPLM). Methods: Glioma SXOs were established and cultured in conventional media or transitioned to HPLM. We evaluated SXO cytoarchitecture and histology, then performed spatial transcriptomic profiling to identify cellular populations and differential gene expression patterns. We performed stable isotope tracing with 15N2-glutamine to evaluate intracellular metabolite labeling patterns. Results: Glioma SXOs cultured in HPLM retain cytoarchitecture and cellular constituents. Immune cells in HPLM-cultured SXOs demonstrated increased transcription of immune-related signatures, including innate immune, adaptive immune, and cytokine signaling programs. 15N isotope enrichment from glutamine was observed in metabolites from diverse pathways, and labeling patterns were stable over time. Conclusion: To enable ex vivo, tractable investigations of whole tumor metabolism, we developed an approach to conduct stable isotope tracing in glioma SXOs cultured under physiologically relevant nutrient conditions. Under these conditions, SXOs maintained viability, composition, and metabolic activity while exhibiting increased immune-related transcriptional programs.

8.
Neurooncol Adv ; 5(1): vdad053, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37287696

RESUMEN

Isocitrate dehydrogenase (IDH) is a key enzyme in normal metabolism and homeostasis. However, mutant forms of IDH are also defining features of a subset of diffuse gliomas. In this review, we highlight current techniques targeting IDH-mutated gliomas and summarize current and completed clinical trials exploring these strategies. We discuss clinical data from peptide vaccines, mutant IDH (mIDH) inhibitors, and PARP inhibitors. Peptide vaccines have the unique advantage of targeting the specific epitope of a patient's tumor, inducing a highly tumor-specific CD4+ T-cell response. mIDH-inhibitors, on the other hand, specifically target mutant IDH proteins in cancer cell metabolism and thus help halt gliomagenesis. We also explore PARP inhibitors and their role in treating diffuse gliomas, which exploit IDH-mutant diffuse gliomas by allowing the persistence of unrepaired DNA complexes. We summarize various completed and current trials targeting IDH1 and IDH2 mutations in diffuse gliomas. Therapies targeting mutant IDH have significant promise in treating progressive or recurrent IDH-mutant gliomas and may significantly change treatment paradigms in the next decade.

9.
Trends Cancer ; 9(8): 624-635, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37173188

RESUMEN

Nucleotides are substrates for multiple anabolic pathways, most notably DNA and RNA synthesis. Since nucleotide synthesis inhibitors began to be used for cancer therapy in the 1950s, our understanding of how nucleotides function in tumor cells has evolved, prompting a resurgence of interest in targeting nucleotide metabolism for cancer therapy. In this review, we discuss recent advances that challenge the idea that nucleotides are mere building blocks for the genome and transcriptome and highlight ways that these metabolites support oncogenic signaling, stress resistance, and energy homeostasis in tumor cells. These findings point to a rich network of processes sustained by aberrant nucleotide metabolism in cancer and reveal new therapeutic opportunities.


Asunto(s)
Neoplasias , Nucleótidos , Humanos , Nucleótidos/metabolismo , Nucleótidos/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/genética , ADN
10.
Nature ; 617(7962): 818-826, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37198486

RESUMEN

Cancer cells rewire metabolism to favour the generation of specialized metabolites that support tumour growth and reshape the tumour microenvironment1,2. Lysine functions as a biosynthetic molecule, energy source and antioxidant3-5, but little is known about its pathological role in cancer. Here we show that glioblastoma stem cells (GSCs) reprogram lysine catabolism through the upregulation of lysine transporter SLC7A2 and crotonyl-coenzyme A (crotonyl-CoA)-producing enzyme glutaryl-CoA dehydrogenase (GCDH) with downregulation of the crotonyl-CoA hydratase enoyl-CoA hydratase short chain 1 (ECHS1), leading to accumulation of intracellular crotonyl-CoA and histone H4 lysine crotonylation. A reduction in histone lysine crotonylation by either genetic manipulation or lysine restriction impaired tumour growth. In the nucleus, GCDH interacts with the crotonyltransferase CBP to promote histone lysine crotonylation. Loss of histone lysine crotonylation promotes immunogenic cytosolic double-stranded RNA (dsRNA) and dsDNA generation through enhanced H3K27ac, which stimulates the RNA sensor MDA5 and DNA sensor cyclic GMP-AMP synthase (cGAS) to boost type I interferon signalling, leading to compromised GSC tumorigenic potential and elevated CD8+ T cell infiltration. A lysine-restricted diet synergized with MYC inhibition or anti-PD-1 therapy to slow tumour growth. Collectively, GSCs co-opt lysine uptake and degradation to shunt the production of crotonyl-CoA, remodelling the chromatin landscape to evade interferon-induced intrinsic effects on GSC maintenance and extrinsic effects on immune response.


Asunto(s)
Histonas , Lisina , Neoplasias , Procesamiento Proteico-Postraduccional , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Glutaril-CoA Deshidrogenasa/metabolismo , Histonas/química , Histonas/metabolismo , Lisina/deficiencia , Lisina/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , ARN Bicatenario/inmunología , Humanos , Animales , Ratones , Interferón Tipo I/inmunología
11.
Front Oncol ; 13: 1139383, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051530

RESUMEN

Models for human gliomas prove critical not only to advancing our understanding of glioma biology but also to facilitate the development of therapeutic modalities. Specifically, creating lower-grade glioma (LGG) models has been challenging, contributing to few investigations and the minimal progress in standard treatment over the past decade. In order to reliably predict and validate the efficacies of novel treatments, however, LGG models need to adhere to specific standards that recapitulate tumor genetic aberrations and micro-environment. This underscores the need to revisit existing models of LGG and explore prospective models that may bridge the gap between preclinical insights and clinical translation. This review first outlines a set of criteria aimed to address the current challenges hindering model development. We then evaluate the strengths and weaknesses of existing preclinical models of LGG with respect to these established standards. To conclude, the review discusses potential future directions for integrating existing models to maximize the exploration of disease mechanisms and therapeutics development.

12.
Cell Chem Biol ; 30(2): 214-229.e18, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36758549

RESUMEN

Glioblastoma (GBM) is an aggressive adult brain cancer with few treatment options due in part to the challenges of identifying brain-penetrant drugs. Here, we investigated the mechanism of MM0299, a tetracyclic dicarboximide with anti-glioblastoma activity. MM0299 inhibits lanosterol synthase (LSS) and diverts sterol flux away from cholesterol into a "shunt" pathway that culminates in 24(S),25-epoxycholesterol (EPC). EPC synthesis following MM0299 treatment is both necessary and sufficient to block the growth of mouse and human glioma stem-like cells by depleting cellular cholesterol. MM0299 exhibits superior selectivity for LSS over other sterol biosynthetic enzymes. Critical for its application in the brain, we report an MM0299 derivative that is orally bioavailable, brain-penetrant, and induces the production of EPC in orthotopic GBM tumors but not normal mouse brain. These studies have implications for the development of an LSS inhibitor to treat GBM or other neurologic indications.


Asunto(s)
Glioblastoma , Glioma , Adulto , Humanos , Lanosterol/farmacología , Lanosterol/metabolismo , Encéfalo/metabolismo , Glioma/tratamiento farmacológico , Glioma/metabolismo , Colesterol , Glioblastoma/tratamiento farmacológico
13.
J Neurooncol ; 162(3): 515-523, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36352183

RESUMEN

PURPOSE: Since the discovery of IDH mutations in glioma over a decade ago, significant progress has been made in determining how these mutations affect epigenetic, transcriptomic, and metabolic programs in brain tumor cells. In this article, we summarize current understanding of how IDH mutations influence DNA damage in glioma and discuss clinical implications of these findings. METHODS: We performed a thorough review of peer-reviewed publications and provide an overview of key mechanisms by which IDH mutations impact response to DNA damage in gliomas, with an emphasis on clinical implications. RESULTS: The effects of mutant IDH on DNA damage largely fall into four overarching categories: Gene Expression, Sensitivity to Alkylating Agents, Homologous Recombination, and Oxidative Stress. From a mechanistic standpoint, we discuss how mutant IDH and the oncometabolite (R)-2HG affect each of these categories of DNA damage. We also contextualize these mechanisms with respect to ongoing clinical trials. Studies are underway that incorporate current standard-of-care therapies, including radiation and alkylating agents, in addition to novel therapeutic agents that exert genotoxic stress specifically in IDH-mutant gliomas. Lastly, we discuss key unanswered questions and emerging data in this field that have important implications for our understanding of glioma biology and for the development of new brain tumor therapies. CONCLUSION: Mounting preclinical and clinical data suggest that IDH mutations alter DNA damage sensing and repair pathways through distinct mechanisms. Future studies are needed to deepen our understanding of these processes and provide additional mechanistic insights that can be leveraged for therapeutic benefit.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Glioma/genética , Daño del ADN , Mutación , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Isocitrato Deshidrogenasa/genética
14.
Acta Neuropathol Commun ; 10(1): 115, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35978439

RESUMEN

Chromosomal instability (CIN) is a fundamental property of cancer and a key underlying mechanism of tumorigenesis and malignant progression, and has been documented in a wide variety of cancers, including colorectal carcinoma with mutations in genes such as APC. Recent reports have demonstrated that CIN, driven in part by mutations in genes maintaining overall genomic stability, is found in subsets of adult-type diffusely infiltrating gliomas of all histologic and molecular grades, with resulting elevated overall copy number burden, chromothripsis, and poor clinical outcome. Still, relatively few studies have examined the effect of this process, due in part to the difficulty of routinely measuring CIN clinically. Herein, we review the underlying mechanisms of CIN, the relationship between chromosomal instability and malignancy, the prognostic significance and treatment potential in various cancers, systemic disease, and more specifically, in diffusely infiltrating glioma subtypes. While still in the early stages of discovery compared to other solid tumor types in which CIN is a known driver of malignancy, the presence of CIN as an early factor in gliomas may in part explain the ability of these tumors to develop resistance to standard therapy, while also providing a potential molecular target for future therapies.


Asunto(s)
Cromotripsis , Glioma , Adulto , Inestabilidad Cromosómica/genética , Glioma/genética , Humanos , Mutación/genética , Pronóstico
15.
Cancer Cell ; 40(9): 939-956.e16, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35985343

RESUMEN

Mutations affecting isocitrate dehydrogenase (IDH) enzymes are prevalent in glioma, leukemia, and other cancers. Although mutant IDH inhibitors are effective against leukemia, they seem to be less active in aggressive glioma, underscoring the need for alternative treatment strategies. Through a chemical synthetic lethality screen, we discovered that IDH1-mutant glioma cells are hypersensitive to drugs targeting enzymes in the de novo pyrimidine nucleotide synthesis pathway, including dihydroorotate dehydrogenase (DHODH). We developed a genetically engineered mouse model of mutant IDH1-driven astrocytoma and used it and multiple patient-derived models to show that the brain-penetrant DHODH inhibitor BAY 2402234 displays monotherapy efficacy against IDH-mutant gliomas. Mechanistically, this reflects an obligate dependence of glioma cells on the de novo pyrimidine synthesis pathway and mutant IDH's ability to sensitize to DNA damage upon nucleotide pool imbalance. Our work outlines a tumor-selective, biomarker-guided therapeutic strategy that is poised for clinical translation.


Asunto(s)
Neoplasias Encefálicas , Glioma , Leucemia , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Inhibidores Enzimáticos/uso terapéutico , Glioma/tratamiento farmacológico , Glioma/genética , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Ratones , Mutación , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Salicilanilidas , Triazoles
16.
J Neurol Surg Rep ; 83(3): e72-e76, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35832685

RESUMEN

Intraosseous hemangiomas are rare, benign tumors that can arise from the calvarium. These lesions often invade the outer table of the skull, but typically spare the inner table and intracranial structures. En bloc surgical resection is the standard treatment for intraosseous hemangiomas. However, a piecemeal resection may be required to safely remove the tumor in cases involving the inner table to protect the underlying brain parenchyma and vascular structures. Proper reconstruction is critical to optimize the cosmetic outcome, and a staged procedure allowing implantation of a custom-made implant can be considered for large lesions involving the forehead. We present a case of a patient with a large frontal intraosseous hemangioma with intradural involvement to highlight the surgical nuances of resection and review the existing literature regarding optimal management of these patients.

17.
Cancer Inform ; 21: 11769351221100754, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35652106

RESUMEN

The creation of patient-derived cancer organoids represents a key advance in preclinical modeling and has recently been applied to a variety of human solid tumor types. However, conventional methods used to assess in vivo tumor tissue treatment response are poorly suited for the evaluation of cancer organoids because they are time-intensive and involve tissue destruction. To address this issue, we established a suite of 3-dimensional patient-derived glioma organoids, treated them with chemoradiotherapy, stained organoids with non-toxic cell dyes, and imaged them using a rapid laser scanning confocal microscopy method termed "Apex Imaging." We then developed and tested a fragmentation algorithm to quantify heterogeneity in the topography of the organoids as a potential surrogate marker of viability. This algorithm, SSDquant, provides a 3-dimensional visual representation of the organoid surface and a numerical measurement of the sum-squared distance (SSD) from the derived mass center of the organoid. We tested whether SSD scores correlate with traditional immunohistochemistry-derived cell viability markers (cellularity and cleaved caspase 3 expression) and observed statistically significant associations between them using linear regression analysis. Our work describes a quantitative, non-invasive approach for the serial measurement of patient-derived cancer organoid viability, thus opening new avenues for the application of these models to studies of cancer biology and therapy.

18.
Acta Neuropathol Commun ; 10(1): 32, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35264242

RESUMEN

Diffusely infiltrating gliomas are among the most common central nervous system tumors in adults. Over the past decade, the subcategorization of these tumors has changed to include both traditional histologic features and more recently identified molecular factors. However, one molecular feature that has yet to be integrated is the presence/absence of chromosomal instability (CIN). Herein, we use global methylation profiling to evaluate a reference cohort of IDH-mutant astrocytomas with and without prior evidence of CIN (n = 42), and apply the resulting methylation-based characteristics to a larger test cohort of publicly-available IDH-mutant astrocytomas (n = 245). We demonstrate that IDH-mutant astrocytomas with evidence of CIN cluster separately from their chromosomally-stable counterparts. CIN cases were associated with higher initial histologic grade, altered expression patterns of genes related to CIN in other cancers, elevated initial total copy number burden, and significantly worse progression-free and overall survival. In addition, in a grade-for-grade analysis, patients with CIN-positive WHO grade 2 and 3 tumors had significantly worse survival. These results suggest that global methylation profiling can be used to discriminate between chromosomally stable and unstable IDH-mutant astrocytomas, and may therefore provide a reliable and cost-effective method for identifying gliomas with chromosomal instability and resultant poor clinical outcome.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioma , Adulto , Astrocitoma/patología , Neoplasias Encefálicas/patología , Inestabilidad Cromosómica/genética , Metilación de ADN , Glioma/genética , Humanos , Isocitrato Deshidrogenasa/genética , Mutación/genética
19.
Clin Neurol Neurosurg ; 213: 107128, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35051704

RESUMEN

OBJECTIVE: Cortical mapping has been used as a tool to ensure maximal safe resection of intracranial tumors for several decades. Post-surgical motor and language deficits, including seizures, weakness, aphasia, and dysarthria have been well-documented in patients undergoing these operations, particularly on eloquent cortical regions. However, it is not known whether awake versus asleep cortical mapping contributes to differences in postoperative neurological deficits. METHODS: A comprehensive review of the literature utilizing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines was completed for articles describing cortical mapping for tumor resection. We critically assessed all articles published in the last 20 years describing complications of patients who had undergone either awake or asleep motor mapping for eloquent brain tumor resection. Studies were analyzed for number of patients, follow-up duration, rates of transient and permanent motor and sensory deficits in the perioperative period, and outcomes at one-month follow-up. RESULTS: Thirty-one studies met inclusion criteria, 24 of which reported long-term post-operative follow-up data. Follow-up among selected studies ranged from one month to four years. Nine of the 31 studies directly compared the postoperative outcomes of awake versus asleep mapping. The rate of transient deficits among patients who underwent awake and asleep mapping was 31.6% and 32.7%, respectively. The rate of permanent deficits was 10.8% in awake mapping patients and 12.7% in asleep mapping patients. Qualitative analysis showed that motor and sensory complications occurred at similar rates. CONCLUSIONS: Review of the current evidence suggests that the rates of transient and permanent postoperative neurologic deficits among awake versus asleep cortical mapping groups are similar. Thus, use of both techniques is reasonable to minimize perioperative morbidity.


Asunto(s)
Neoplasias Encefálicas , Vigilia , Mapeo Encefálico/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/cirugía , Craneotomía/métodos , Humanos , Convulsiones/cirugía
20.
Neuro Oncol ; 24(4): 612-623, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34850183

RESUMEN

BACKGROUND: Historically, creating patient-derived models of lower-grade glioma (LGG) has been challenging, contributing to few experimental platforms that support laboratory-based investigations of this disease. Although organoid modeling approaches have recently been employed to create in vitro models of high-grade glioma (HGG), it is unknown whether this approach can be successfully applied to LGG. METHODS: In this study, we developed an optimized protocol for the establishment of organoids from LGG primary tissue samples by utilizing physiologic (5%) oxygenation conditions and employed it to produce the first known suite of these models. To assess their fidelity, we surveyed key biological features of patient-derived organoids using metabolic, genomic, histologic, and lineage marker gene expression assays. RESULTS: Organoid models were created with a success rate of 91% (n = 20/22) from primary tumor samples across glioma histological subtypes and tumor grades (WHO Grades 1-4), and a success rate of 87% (13/15) for WHO Grade 1-3 tumors. Patient-derived organoids recapitulated stemness, proliferative, and tumor-stromal composition profiles of their respective parental tumor specimens. Cytoarchitectural, mutational, and metabolic traits of parental tumors were also conserved. Importantly, LGG organoids were maintained in vitro for weeks to months and reanimated after biobanking without loss of integrity. CONCLUSIONS: We report an efficient method for producing faithful in vitro models of LGG. New experimental platforms generated through this approach are well positioned to support preclinical studies of this disease, particularly those related to tumor immunology, tumor-stroma interactions, identification of novel drug targets, and personalized assessments of treatment response profiles.


Asunto(s)
Neoplasias Encefálicas , Glioma , Bancos de Muestras Biológicas , Neoplasias Encefálicas/patología , Glioma/patología , Humanos , Organoides/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA