RESUMEN
COVID-19 (hereafter COVID) induced lockdown provided a unique opportunity to evaluate the effects of human activities on coastal ecosystems. This study quantified the seasonal variations in concentrations of nine metals (Al, Cr, Cd, Co, Cu, Fe, Mn, Ni, and Pb) in surface water and sediment samples of the largest brackish water lagoon in Asia (i.e., Chilika Lagoon), comparing pre-and post-COVID scenarios. The COVID lockdown resulted in a wide variation in metals concentrations, with surface water showing 1 to 8.6-fold reduction in metals such as Al, Cr, Cu, Fe, Mn, and Pb, while sediment displayed a more modest reduction of 1 to 1.3-fold. Metals like Cd, Co and Ni were below detection limit in post-COVID water samples with a slight decrease (1-fold) in the sediments. COVID lockdown did not show any significant correlation with metal concentrations in water or sediment. This study provides baseline data for metal contamination in the surface water and sediment of the Chilika Lagoon.
RESUMEN
This study quantified the organic carbon (Corg) stocks in Thalassia hemprichii meadows that are (i) adjacent to mangroves (MG), and (ii) without mangroves (WMG), in tropical Andaman and Nicobar Islands (ANI) of India. In the top 10 cm of the sediment, Corg content was 1.8-fold higher at the MG sites than the WMG sites. The total Corg stocks (sediment + biomass) in the 144 ha of seagrass meadows at MG sites (988.74 ± 138.77 Mg C) was 1.9-fold higher than in 148 ha of WMG sites. Protection and management of T. hemprichii meadows of ANI can lead to emission avoidance of around 5447.33 (MG; 3595.12 + WMG: 1852.21) tons of CO2. The social cost of the carbon stocks in these T. hemprichii meadows is around US$ 0.30 and 0.16 million at the MG and WMG sites, respectively, showcasing the importance of ANI's seagrass ecosystems as nature-based solutions for climate change mitigation.
Asunto(s)
Carbono , Ecosistema , Sedimentos Geológicos , Biomasa , Secuestro de CarbonoRESUMEN
Asian tiger shrimp Penaeus monodon (P. monodon) of Chilika lagoon, India was studied regarding the metal accumulation and its associated human health risks. It showed a tendency of metal accumulation in the following order: Zn > Ni > Cu > Co > Cr > Pb > Cd. A two-way ANOVA indicated the metal accumulation was insignificant with respect to season (n = 421, p = 0.59) and sector (n = 32, p = 0.61). The estimated daily intake (EDI), targeted hazard quotient (THQ) and hazard index (HI), and carcinogenic risks (CR) revealed no potential human health risks and were safe for consumption. The pollution load index (PLI) of <1, Geo-accumulation index (Igeo,) and contamination factor (CF) indicated that the study area was unpolluted. This pioneering study highlighted that P. monodon was nurtured well in the healthy habitat of Chilika lagoon and the fair level of metal content made it an excellent source of dietary components.
Asunto(s)
Metales Pesados , Penaeidae , Animales , Humanos , Medición de Riesgo , Metales Pesados/análisis , Contaminación Ambiental/análisis , Carcinógenos/análisis , Monitoreo del AmbienteRESUMEN
Toxicological assessment of CMQW generated due to chromite mining activities at Sukinda Valley has revealed high chromium contamination along with Zn and Fe. The present study focused on the mechanism of chromate reduction by an indigenous multi-metal tolerant bacterium, Rhizobium pusense CR02, isolated from CMQW. The isolated strain has shown resistance up to 520 mg/L of Cr(VI) with an IC50 value of 385.4 mg/L. The highest reduction rate 8.6 × 10-2/h was recorded with 20 mg/L of initial concentration of Cr(VI). Extracellular (3.06 ± 0.012 U/mL), intracellular (3.60 ± 0.13 U/mL), and membrane (1.89 ± 0.01 U/mL) associated chromate reductases were found to be involved for reduction. The extracellular polymeric substances (EPS) produced by the isolate also enhanced reduction activity of 46.32 ± 1.69 mg/L after 72 h with an initial concentration of 50 mg/L. FTIR analysis revealed the involvement of functional groups -OH, -CO, and -NH for Cr(VI) biosorption whereas P=O, -CO-NH- and -COOH interacted with Cr(III). Zeta potential with less negative surface charge favored reduction of Cr(VI). Treatment of CMQW by bacterial isolate detoxified Cr(VI) minimizing chromosomal aberrations in root cells of Allium cepa L., suggesting the role of Rhizobium pusense CR02 as a promising bio-agent for Cr(VI) detoxification.
Asunto(s)
Cromatos , Cromo , Metales , Oxidación-Reducción , Biodegradación AmbientalRESUMEN
India successfully executed one of the strictest lockdowns in the world during the height of the COVID-19 pandemic in early 2020, which provided unique opportunities to analyze the second-largest populous country's anthropogenic footprint on its natural systems. India's first Ramsar site and the world's second-largest brackish water system Chilika lagoon experienced a substantial decline (64%) in the total petroleum hydrocarbon (TPHC) level in water, which was attributed to the massive declines or, at times, an abrupt complete halt of motorized boat operations for fishing and tourism. Using the TPHC values during the lockdown period, our study recommends a TPHC baseline threshold of 2.02 µg L-1 and 0.91 µg g-1 for Chilika waters and sediment, respectively. These baseline values can be used to quantify oil pollution and to formulate policy and management action plans for Chilika lagoon as well as for other similar ecosystems by local environmental agencies.
Asunto(s)
COVID-19 , Petróleo , Humanos , Asia , Control de Enfermedades Transmisibles , Ecosistema , Monitoreo del Ambiente , Hidrocarburos/análisis , India , Pandemias , Petróleo/análisis , Aguas Salinas , SARS-CoV-2RESUMEN
Cyclones can produce a wide variety of short-term and long-term ecological impacts on coastal lagoons depending on cyclone's physical-meteorological characteristics and the lagoon's geographic, geomorphic, and bathymetric characteristics. Here, we theorized that in monsoon regulated tropical coastal lagoons, another important factor that could determine the impact of a cyclone is the landfall season or time of the year with reference to the monsoon season. We analyzed the impact of two cyclones which made landfall near Chilika, Asia's largest brackish water lagoon in different seasons, Cyclone Fani and Titli before and after the monsoon season. We compared field measured and satellite-derived water quality parameters including nutrient, salinity, water temperature, transparency, Chlorophyll-a (Chl-a), total suspended matter (TSM), and colored dissolved organic matter (CDOM) before and after the cyclones. We found that although both the cyclones were of similar intensities, after their land interaction, their impact on the lagoon's water quality was contrasting. The post-monsoon cyclone produced a substantial increase in total nitrogen (TN) and total phosphorous (TP), a large drop in salinity, CDOM, and Chl-a. In contrast, after the pre-monsoon cyclone, TN and TP did not show any such hike, no substantial change in salinity and CDOM either, and only a slight increase in Chl-a was observed. We found that the controlling factor in determining the impact of a cyclone is the rate and duration of freshwater discharge to the lagoon, which is normally a strong pulse for pre-monsoon and a continued high flow for post-monsoon cyclones. We conclude that the antecedent conditions of the lagoon and the watershed at the time of a cyclone's landfall is a key criterion in determining the impact. The combined use of satellite data and field data was proved critical to capture the overall impact of cyclones on the hydrological characteristics of the monsoon-regulated coastal lagoon.