Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genet Med ; 26(5): 101076, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38258669

RESUMEN

PURPOSE: Genome sequencing (GS)-specific diagnostic rates in prospective tightly ascertained exome sequencing (ES)-negative intellectual disability (ID) cohorts have not been reported extensively. METHODS: ES, GS, epigenetic signatures, and long-read sequencing diagnoses were assessed in 74 trios with at least moderate ID. RESULTS: The ES diagnostic yield was 42 of 74 (57%). GS diagnoses were made in 9 of 32 (28%) ES-unresolved families. Repeated ES with a contemporary pipeline on the GS-diagnosed families identified 8 of 9 single-nucleotide variations/copy-number variations undetected in older ES, confirming a GS-unique diagnostic rate of 1 in 32 (3%). Episignatures contributed diagnostic information in 9% with GS corroboration in 1 of 32 (3%) and diagnostic clues in 2 of 32 (6%). A genetic etiology for ID was detected in 51 of 74 (69%) families. Twelve candidate disease genes were identified. Contemporary ES followed by GS cost US$4976 (95% CI: $3704; $6969) per diagnosis and first-line GS at a cost of $7062 (95% CI: $6210; $8475) per diagnosis. CONCLUSION: Performing GS only in ID trios would be cost equivalent to ES if GS were available at $2435, about a 60% reduction from current prices. This study demonstrates that first-line GS achieves higher diagnostic rate than contemporary ES but at a higher cost.


Asunto(s)
Secuenciación del Exoma , Exoma , Discapacidad Intelectual , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Masculino , Femenino , Exoma/genética , Secuenciación del Exoma/economía , Estudios de Cohortes , Pruebas Genéticas/economía , Pruebas Genéticas/métodos , Secuenciación Completa del Genoma/economía , Niño , Genoma Humano/genética , Variaciones en el Número de Copia de ADN/genética , Polimorfismo de Nucleótido Simple/genética , Preescolar
2.
Hum Mol Genet ; 32(12): 2084-2092, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-36920481

RESUMEN

Recessive variants in the oxidoreductase PYROXD1 are reported to cause a myopathy in 22 affected individuals from 15 families. Here, we describe two female probands from unrelated families presenting with features of a congenital connective tissue disorder including osteopenia, blue sclera, soft skin, joint hypermobility and neuromuscular junction dysfunction in addition to known features of PYROXD1 myopathy including respiratory difficulties, weakness, hypotonia and oromotor dysfunction. Proband AII:1 is compound heterozygous for the recurrent PYROXD1 variant Chr12(GRCh38):g.21452130A>G;NM_024854.5:c.464A>G;p.(N155S) and Chr12(GRCh38):g.21462019_21462022del;NM_024854.5:c.892_895del;p.(V298Mfs*4) and proband BII:1 is compound heterozygous for Chr12(GRCh38):g.21468739-21468741del;NM_024854.5:c.1488_1490del;p.(E496del) and Chr12(GRCh38):g.21467619del;NM_024854.5:c.1254+1del. RNA studies demonstrate c.892_895del;p.(V298Mfs*4) is targeted by nonsense mediated decay and c.1254+1delG elicits in-frame skipping of exon-11. Western blot from cultured fibroblasts shows reduced PYROXD1 protein levels in both probands. Testing urine from BII:1 and six individuals with PYROXD1 myopathy showed elevated levels of deoxypyridinoline, a mature collagen crosslink, correlating with PYROXD1-disorder severity. Urine and serum amino acid testing of the same individuals revealed no reportable changes. In contrast to PYROXD1 knock-out, we find no evidence for disrupted tRNA ligase activity, as measured via XBP1 splicing, in fibroblasts expressing PYROXD1 variants. In summary, we expand the clinical spectrum of PYROXD1-related disorders to include an overlapping connective tissue and myopathy presentation, identify three novel, pathogenic PYROXD1 variants, and provide preliminary evidence that elevated urine DPD crosslinks may provide a clinical biomarker for PYROXD1 disorders. Our results advocate consideration of PYROXD1 variants in the differential diagnosis for undiagnosed individuals presenting with a connective tissue disorder and myopathy.


Asunto(s)
Enfermedades Musculares , Humanos , Femenino , Enfermedades Musculares/genética , Oxidorreductasas/genética , Hipotonía Muscular , Tejido Conectivo/patología
3.
Eur J Hum Genet ; 30(10): 1121-1131, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35970915

RESUMEN

Whole genome sequencing (WGS) improves Mendelian disorder diagnosis over whole exome sequencing (WES); however, additional diagnostic yields and costs remain undefined. We investigated differences between diagnostic and cost outcomes of WGS and WES in a cohort with suspected Mendelian disorders. WGS was performed in 38 WES-negative families derived from a 64 family Mendelian cohort that previously underwent WES. For new WGS diagnoses, contemporary WES reanalysis determined whether variants were diagnosable by original WES or unique to WGS. Diagnostic rates were estimated for WES and WGS to simulate outcomes if both had been applied to the 64 families. Diagnostic costs were calculated for various genomic testing scenarios. WGS diagnosed 34% (13/38) of WES-negative families. However, contemporary WES reanalysis on average 2 years later would have diagnosed 18% (7/38 families) resulting in a WGS-specific diagnostic yield of 19% (6/31 remaining families). In WES-negative families, the incremental cost per additional diagnosis using WGS following WES reanalysis was AU$36,710 (£19,407;US$23,727) and WGS alone was AU$41,916 (£22,159;US$27,093) compared to WES-reanalysis. When we simulated the use of WGS alone as an initial genomic test, the incremental cost for each additional diagnosis was AU$29,708 (£15,705;US$19,201) whereas contemporary WES followed by WGS was AU$36,710 (£19,407;US$23,727) compared to contemporary WES. Our findings confirm that WGS is the optimal genomic test choice for maximal diagnosis in Mendelian disorders. However, accepting a small reduction in diagnostic yield, WES with subsequent reanalysis confers the lowest costs. Whether WES or WGS is utilised will depend on clinical scenario and local resourcing and availability.


Asunto(s)
Exoma , Secuencia de Bases , Mapeo Cromosómico , Humanos , Secuenciación del Exoma , Secuenciación Completa del Genoma
4.
JAMA ; 323(24): 2503-2511, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32573669

RESUMEN

Importance: Widespread adoption of rapid genomic testing in pediatric critical care requires robust clinical and laboratory pathways that provide equitable and consistent service across health care systems. Objective: To prospectively evaluate the performance of a multicenter network for ultra-rapid genomic diagnosis in a public health care system. Design, Setting, and Participants: Descriptive feasibility study of critically ill pediatric patients with suspected monogenic conditions treated at 12 Australian hospitals between March 2018 and February 2019, with data collected to May 2019. A formal implementation strategy emphasizing communication and feedback, standardized processes, coordination, distributed leadership, and collective learning was used to facilitate adoption. Exposures: Ultra-rapid exome sequencing. Main Outcomes and Measures: The primary outcome was time from sample receipt to ultra-rapid exome sequencing report. The secondary outcomes were the molecular diagnostic yield, the change in clinical management after the ultra-rapid exome sequencing report, the time from hospital admission to the laboratory report, and the proportion of laboratory reports returned prior to death or hospital discharge. Results: The study population included 108 patients with a median age of 28 days (range, 0 days to 17 years); 34% were female; and 57% were from neonatal intensive care units, 33% were from pediatric intensive care units, and 9% were from other hospital wards. The mean time from sample receipt to ultra-rapid exome sequencing report was 3.3 days (95% CI, 3.2-3.5 days) and the median time was 3 days (range, 2-7 days). The mean time from hospital admission to ultra-rapid exome sequencing report was 17.5 days (95% CI, 14.6-21.1 days) and 93 reports (86%) were issued prior to death or hospital discharge. A molecular diagnosis was established in 55 patients (51%). Eleven diagnoses (20%) resulted from using the following approaches to augment standard exome sequencing analysis: mitochondrial genome sequencing analysis, exome sequencing-based copy number analysis, use of international databases to identify novel gene-disease associations, and additional phenotyping and RNA analysis. In 42 of 55 patients (76%) with a molecular diagnosis and 6 of 53 patients (11%) without a molecular diagnosis, the ultra-rapid exome sequencing result was considered as having influenced clinical management. Targeted treatments were initiated in 12 patients (11%), treatment was redirected toward palliative care in 14 patients (13%), and surveillance for specific complications was initiated in 19 patients (18%). Conclusions and Relevance: This study suggests feasibility of ultra-rapid genomic testing in critically ill pediatric patients with suspected monogenic conditions in the Australian public health care system. However, further research is needed to understand the clinical value of such testing, and the generalizability of the findings to other health care settings.


Asunto(s)
Enfermedad Crítica , Secuenciación del Exoma/métodos , Enfermedades Genéticas Congénitas/genética , Pruebas Genéticas/métodos , Australia , Niño , Preescolar , Estudios de Factibilidad , Femenino , Enfermedades Genéticas Congénitas/diagnóstico , Humanos , Lactante , Recién Nacido , Masculino , Programas Nacionales de Salud , Estudios Prospectivos , Factores de Tiempo
5.
Hum Mutat ; 2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31646703

RESUMEN

We recently described a new neurodevelopmental syndrome (TAF1/MRXS33 intellectual disability syndrome) (MIM# 300966) caused by pathogenic variants involving the X-linked gene TAF1, which participates in RNA polymerase II transcription. The initial study reported eleven families, and the syndrome was defined as presenting early in life with hypotonia, facial dysmorphia, and developmental delay that evolved into intellectual disability (ID) and/or autism spectrum disorder (ASD). We have now identified an additional 27 families through a genotype-first approach. Familial segregation analysis, clinical phenotyping, and bioinformatics were capitalized on to assess potential variant pathogenicity, and molecular modelling was performed for those variants falling within structurally characterized domains of TAF1. A novel phenotypic clustering approach was also applied, in which the phenotypes of affected individuals were classified using 51 standardized Human Phenotype Ontology (HPO) terms. Phenotypes associated with TAF1 variants show considerable pleiotropy and clinical variability, but prominent among previously unreported effects were brain morphological abnormalities, seizures, hearing loss, and heart malformations. Our allelic series broadens the phenotypic spectrum of TAF1/MRXS33 intellectual disability syndrome and the range of TAF1 molecular defects in humans. It also illustrates the challenges for determining the pathogenicity of inherited missense variants, particularly for genes mapping to chromosome X. This article is protected by copyright. All rights reserved.

6.
J Am Coll Cardiol ; 72(6): 605-615, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30071989

RESUMEN

BACKGROUND: Thoracic aortic aneurysms progressively enlarge and predispose to acute aortic dissections. Up to 25% of individuals with thoracic aortic disease harbor an underlying Mendelian pathogenic variant. An evidence-based strategy for selection of genes to test in hereditary thoracic aortic aneurysm and dissection (HTAAD) helps inform family screening and intervention to prevent life-threatening thoracic aortic events. OBJECTIVES: The purpose of this study was to accurately identify genes that predispose to HTAAD using the Clinical Genome Resource (ClinGen) framework. METHODS: We applied the semiquantitative ClinGen framework to assess presumed gene-disease relationships between 53 candidate genes and HTAAD. Genes were classified as causative for HTAAD if they were associated with isolated thoracic aortic disease and were clinically actionable, triggering routine aortic surveillance, intervention, and family cascade screening. All gene-disease assertions were evaluated by a pre-defined curator-expert pair and subsequently discussed with an expert panel. RESULTS: Genes were classified based on the strength of association with HTAAD into 5 categories: definitive (n = 9), strong (n = 2), moderate (n = 4), limited (n = 15), and no reported evidence (n = 23). They were further categorized by severity of associated aortic disease and risk of progression. Eleven genes in the definitive and strong groups were designated as "HTAAD genes" (category A). Eight genes were classified as unlikely to be progressive (category B) and 4 as low risk (category C). The remaining genes were recent genes with an uncertain classification or genes with no evidence of association with HTAAD. CONCLUSIONS: The ClinGen framework is useful to semiquantitatively assess the strength of gene-disease relationships for HTAAD. Gene categories resulting from the curation may inform clinical laboratories in the development, interpretation, and subsequent clinical implications of genetic testing for patients with aortic disease.


Asunto(s)
Aneurisma de la Aorta Torácica/diagnóstico , Aneurisma de la Aorta Torácica/genética , Disección Aórtica/diagnóstico , Disección Aórtica/genética , Predisposición Genética a la Enfermedad/genética , Pruebas Genéticas/normas , Femenino , Pruebas Genéticas/métodos , Humanos , Masculino , Reproducibilidad de los Resultados
8.
Am J Med Genet A ; 173(8): 2246-2250, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28574218

RESUMEN

GMPPA encodes the GDP-mannose pyrophosphorylase A protein (GMPPA). The function of GMPPA is not well defined, however it is a homolog of GMPPB which catalyzes the reaction that converts mannose-1-phosphate and guanosine-5'-triphosphate to GDP-mannose. Previously, biallelic mutations in GMPPA were reported to cause a disorder characterized by achalasia, alacrima, neurological deficits, and intellectual disability. In this study, we report a female proband with achalasia, alacrima, hypohydrosis, apparent intellectual disability, seizures, microcephaly, esotropia, and craniofacial dysmorphism. Exome sequencing identified a previously unreported homozygous c.853+1G>A variant in GMPPA in the proband and her affected sister. Their unaffected parents were heterozygous, and unaffected brother homozygous wild type for this variant. Lymphoblast cells from the affected sisters showed complete loss of the GMPPA protein by Western blotting, and increased levels of GDP-mannose in lymphoblasts on high performance liquid chromatography. Based on our findings and the previous report describing patients with an overlapping phenotype, we conclude that this novel variant in GMPPA, identified by exome sequencing in the proband and her affected sister, is the genetic cause of their phenotype and may expand the known phenotype of this recently described glycosylation disorder.


Asunto(s)
Anomalías Múltiples/genética , Epilepsia/genética , Discapacidad Intelectual/genética , Atrofia Muscular/genética , Nucleotidiltransferasas/genética , Anomalías Múltiples/fisiopatología , Niño , Preescolar , Anomalías Craneofaciales/complicaciones , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/fisiopatología , Epilepsia/complicaciones , Epilepsia/fisiopatología , Exoma/genética , Facies , Femenino , Heterocigoto , Humanos , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/fisiopatología , Microcefalia/complicaciones , Microcefalia/genética , Microcefalia/fisiopatología , Atrofia Muscular/fisiopatología , Mutación Missense , Linaje , Fenotipo , Convulsiones/complicaciones , Convulsiones/genética , Convulsiones/fisiopatología
9.
Am J Med Genet A ; 173(7): 1739-1746, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28498505

RESUMEN

Frontometaphyseal dysplasia (FMD) is caused by gain-of-function mutations in the X-linked gene FLNA in approximately 50% of patients. Recently we characterized an autosomal dominant form of FMD (AD-FMD) caused by mutations in MAP3K7, which accounts for the condition in the majority of patients who lack a FLNA mutation. We previously also described a patient with a de novo variant in TAB2, which we hypothesized was causative of another form of AD-FMD. In this study, a cohort of 20 individuals with AD-FMD is clinically evaluated. This cohort consists of 15 individuals with the recently described, recurrent mutation (c.1454C>T) in MAP3K7, as well as three individuals with missense mutations that result in substitutions in the N-terminal kinase domain of TGFß-activated kinase 1 (TAK1), encoded by MAP3K7. Additionally, two individuals have missense variants in the gene TAB2, which encodes a protein with a close functional relationship to TAK1, TAK1-associated binding protein 2 (TAB2). Although the X-linked and autosomal dominant forms of FMD are very similar, there are distinctions to be made between the two conditions. Individuals with AD-FMD have characteristic facial features, and are more likely to be deaf, have scoliosis and cervical fusions, and have a cleft palate. Furthermore, there are features only found in AD-FMD in our review of the literature including valgus deformity of the feet and predisposition to keloid scarring. Finally, intellectual disability is present in a small number of subjects with AD-FMD but has not been described in association with X-linked FMD.

11.
Am J Hum Genet ; 99(2): 392-406, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27426733

RESUMEN

Frontometaphyseal dysplasia (FMD) is a progressive sclerosing skeletal dysplasia affecting the long bones and skull. The cause of FMD in some individuals is gain-of-function mutations in FLNA, although how these mutations result in a hyperostotic phenotype remains unknown. Approximately one half of individuals with FMD have no identified mutation in FLNA and are phenotypically very similar to individuals with FLNA mutations, except for an increased tendency to form keloid scars. Using whole-exome sequencing and targeted Sanger sequencing in 19 FMD-affected individuals with no identifiable FLNA mutation, we identified mutations in two genes-MAP3K7, encoding transforming growth factor ß (TGF-ß)-activated kinase (TAK1), and TAB2, encoding TAK1-associated binding protein 2 (TAB2). Four mutations were found in MAP3K7, including one highly recurrent (n = 15) de novo mutation (c.1454C>T [ p.Pro485Leu]) proximal to the coiled-coil domain of TAK1 and three missense mutations affecting the kinase domain (c.208G>C [p.Glu70Gln], c.299T>A [p.Val100Glu], and c.502G>C [p.Gly168Arg]). Notably, the subjects with the latter three mutations had a milder FMD phenotype. An additional de novo mutation was found in TAB2 (c.1705G>A, p.Glu569Lys). The recurrent mutation does not destabilize TAK1, or impair its ability to homodimerize or bind TAB2, but it does increase TAK1 autophosphorylation and alter the activity of more than one signaling pathway regulated by the TAK1 kinase complex. These findings show that dysregulation of the TAK1 complex produces a close phenocopy of FMD caused by FLNA mutations. Furthermore, they suggest that the pathogenesis of some of the filaminopathies caused by FLNA mutations might be mediated by misregulation of signaling coordinated through the TAK1 signaling complex.


Asunto(s)
Frente/anomalías , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Mutación/genética , Osteocondrodisplasias/genética , Transducción de Señal/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Femenino , Filaminas/genética , Humanos , Sistema de Señalización de MAP Quinasas/genética , Masculino , FN-kappa B/metabolismo , Osteocondrodisplasias/metabolismo , Fosforilación , Unión Proteica , Multimerización de Proteína
12.
BMJ Open ; 6(4): e009537, 2016 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-27130160

RESUMEN

BACKGROUND: X linked intellectual disability (XLID) syndromes account for a substantial number of males with ID. Much progress has been made in identifying the genetic cause in many of the syndromes described 20-40 years ago. Next generation sequencing (NGS) has contributed to the rapid discovery of XLID genes and identifying novel mutations in known XLID genes for many of these syndromes. METHODS: 2 NGS approaches were employed to identify mutations in X linked genes in families with XLID disorders. 1 involved exome sequencing of genes on the X chromosome using the Agilent SureSelect Human X Chromosome Kit. The second approach was to conduct targeted NGS sequencing of 90 known XLID genes. RESULTS: We identified the same mutation, a c.12928 G>C transversion in the HUWE1 gene, which gives rise to a p.G4310R missense mutation in 2 XLID disorders: Juberg-Marsidi syndrome (JMS) and Brooks syndrome. Although the original families with these disorders were considered separate entities, they indeed overlap clinically. A third family was also found to have a novel HUWE1 mutation. CONCLUSIONS: As we identified a HUWE1 mutation in an affected male from the original family reported by Juberg and Marsidi, it is evident the syndrome does not result from a mutation in ATRX as reported in the literature. Additionally, our data indicate that JMS and Brooks syndromes are allelic having the same HUWE1 mutation.


Asunto(s)
Cromosomas Humanos X/genética , Sordera/genética , Trastornos del Crecimiento/genética , Hipogonadismo/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Espasticidad Muscular/genética , Ubiquitina-Proteína Ligasas/genética , Adolescente , Adulto , Niño , Exoma , Facies , Enfermedades Genéticas Ligadas al Cromosoma X , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Discapacidad Intelectual , Masculino , Megalencefalia , Persona de Mediana Edad , Mutación , Proteínas Supresoras de Tumor , Adulto Joven
13.
Med J Aust ; 203(6): 261.e1-6, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26377294

RESUMEN

OBJECTIVES: To describe patient characteristics, standard operating procedure, and uptake of genetic testing at the multidisciplinary Cardiac Genetics Clinic (CGC) at the Royal Melbourne Hospital during its first 6 years. DESIGN: Database exploration of referral diagnoses, sex, number of clinic visits and incidence of genetic testing in a population of individuals attending the CGC. SETTING: Tertiary referral hospital (Royal Melbourne Hospital) providing cardiac genetics services to the state of Victoria. PARTICIPANTS: All individuals initially attending the clinic between July 2007 and July 2013, either as the proband or as an at-risk family member. MAIN OUTCOME MEASURES: Classification of patients into diagnostic categories, number of probands and at-risk relatives assessed, incidence and outcomes of genetic testing. RESULTS: 1170 individuals were seen for the first time over the 6-year period; 57.5% made only one visit. The median age was 39 years. Most were encompassed within four broad diagnostic categories: cardiomyopathy (315 patients), aortopathy (303 patients), arrhythmia disorders (203 patients) and resuscitated cardiac arrest and/or family history of sudden cardiac death (341 patients); eight patients had "other" diagnoses. Genetic testing (mutation detection or predictive testing) was undertaken in 381 individuals (32.6%), and a pathogenic mutation was identified in 47.6% of tests, representing 15.3% of the total population. CONCLUSION: The CGC fulfils an important role in assisting clinicians and patients by reviewing genetic cardiac diagnoses. Clinical practice during the study period moved from a selected candidate gene approach to broader gene panel-based testing. This move to next-generation sequencing may increase the detection of mutations and variants of unknown significance. A major contribution by the clinic to the care of these individuals and their families is the provision (or negating) of a diagnosis, and of a plan for managing risks of predictable cardiac disease.


Asunto(s)
Enfermedades Cardiovasculares/genética , Pruebas Genéticas , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Enfermedades Cardiovasculares/diagnóstico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Organizacionales , Mutación , Grupo de Atención al Paciente , Victoria
14.
Am J Hum Genet ; 89(4): 551-63, 2011 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21981781

RESUMEN

Persons with neurodevelopmental disorders or autism spectrum disorder (ASD) often harbor chromosomal microdeletions, yet the individual genetic contributors within these regions have not been systematically evaluated. We established a consortium of clinical diagnostic and research laboratories to accumulate a large cohort with genetic alterations of chromosomal region 2q23.1 and acquired 65 subjects with microdeletion or translocation. We sequenced translocation breakpoints; aligned microdeletions to determine the critical region; assessed effects on mRNA expression; and examined medical records, photos, and clinical evaluations. We identified a single gene, methyl-CpG-binding domain 5 (MBD5), as the only locus that defined the critical region. Partial or complete deletion of MBD5 was associated with haploinsufficiency of mRNA expression, intellectual disability, epilepsy, and autistic features. Fourteen alterations, including partial deletions of noncoding regions not typically captured or considered pathogenic by current diagnostic screening, disrupted MBD5 alone. Expression profiles and clinical characteristics were largely indistinguishable between MBD5-specific alteration and deletion of the entire 2q23.1 interval. No copy-number alterations of MBD5 were observed in 7878 controls, suggesting MBD5 alterations are highly penetrant. We surveyed MBD5 coding variations among 747 ASD subjects compared to 2043 non-ASD subjects analyzed by whole-exome sequencing and detected an association with a highly conserved methyl-CpG-binding domain missense variant, p.79Gly>Glu (c.236G>A) (p = 0.012). These results suggest that genetic alterations of MBD5 cause features of 2q23.1 microdeletion syndrome and that this epigenetic regulator significantly contributes to ASD risk, warranting further consideration in research and clinical diagnostic screening and highlighting the importance of chromatin remodeling in the etiology of these complex disorders.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Cromosomas Humanos Par 2 , Proteínas de Unión al ADN/genética , Epilepsia/genética , Eliminación de Gen , Discapacidad Intelectual/genética , Adolescente , Adulto , Estudios de Casos y Controles , Niño , Preescolar , Islas de CpG , Epigénesis Genética , Femenino , Humanos , Masculino , Fenotipo , Síndrome
15.
Pediatr Res ; 69(3): 265-70, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21135753

RESUMEN

Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder. Diagnostic criteria of neonatal MFS (nMFS), the most severe form, are still debated. The aim of our study was to search for clinical and molecular prognostic factors that could be associated with length of survival. Probands ascertained via the framework of the Universal Marfan database-FBN1, diagnosed before the age of 1 y and presenting with cardiovascular features (aortic root dilatation or valvular insufficiency) were included in this study. Clinical and molecular data were correlated to survival. Among the 60 individuals, 38 had died, 82% died before the age of 1 y, mostly because of congestive heart failure. Three probands reached adulthood. Valvular insufficiencies and diaphragmatic hernia were predictive of shorter life expectancy. Two FBN1 mutations were found outside of the exon 24-32 region (in exons 4 and 21). Mutations in exons 25-26 were overrepresented and were associated with shorter survival (p = 0.03). We report the largest genotyped series of probands with MFS diagnosed before 1 y of life. In this population, factors significantly associated with shorter survival are presence of valvular insufficiencies or diaphragmatic hernia in addition to a mutation in exons 25 or 26.


Asunto(s)
Síndrome de Marfan/diagnóstico , Síndrome de Marfan/genética , Proteínas de Microfilamentos/genética , Mutación , Preescolar , Bases de Datos Factuales , Femenino , Fibrilina-1 , Fibrilinas , Humanos , Lactante , Recién Nacido , Estimación de Kaplan-Meier , Masculino , Síndrome de Marfan/mortalidad , Pronóstico
16.
Eur J Hum Genet ; 18(8): 895-901, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20389311

RESUMEN

Fibulin-4 is a member of the fibulin family, a group of extracellular matrix proteins prominently expressed in medial layers of large veins and arteries. Involvement of the FBLN4 gene in cardiovascular pathology was shown in a murine model and in three patients affected with cutis laxa in association with systemic involvement. To elucidate the contribution of FBLN4 in human disease, we investigated two cohorts of patients. Direct sequencing of 17 patients with cutis laxa revealed no FBLN4 mutations. In a second group of 22 patients presenting with arterial tortuosity, stenosis and aneurysms, FBLN4 mutations were identified in three patients, two homozygous missense mutations (p.Glu126Lys and p.Ala397Thr) and compound heterozygosity for missense mutation p.Glu126Val and frameshift mutation c.577delC. Immunoblotting analysis showed a decreased amount of fibulin-4 protein in the fibroblast culture media of two patients, a finding sustained by diminished fibulin-4 in the extracellular matrix of the aortic wall on immunohistochemistry. pSmad2 and CTGF immunostaining of aortic and lung tissue revealed an increase in transforming growth factor (TGF)beta signaling. This was confirmed by pSmad2 immunoblotting of fibroblast cultures. In conclusion, patients with recessive FBLN4 mutations are predominantly characterized by aortic aneurysms, arterial tortuosity and stenosis. This confirms the important role of fibulin-4 in vascular elastic fiber assembly. Furthermore, we provide the first evidence for the involvement of altered TGFbeta signaling in the pathogenesis of FBLN4 mutations in humans.


Asunto(s)
Enfermedades Cardiovasculares/genética , Cutis Laxo/genética , Proteínas de la Matriz Extracelular/genética , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Aneurisma de la Aorta/genética , Aneurisma de la Aorta/metabolismo , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/metabolismo , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Niño , Constricción Patológica , Cutis Laxo/metabolismo , Cutis Laxo/patología , Tejido Elástico/metabolismo , Tejido Elástico/patología , Proteínas de la Matriz Extracelular/deficiencia , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Mutación del Sistema de Lectura , Humanos , Lactante , Recién Nacido , Masculino , Mutación Missense , Piel/patología , Adulto Joven
17.
Eur J Hum Genet ; 18(2): 163-70, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19809484

RESUMEN

Six submicroscopic deletions comprising chromosome band 2q23.1 in patients with severe mental retardation (MR), short stature, microcephaly and epilepsy have been reported, suggesting that haploinsufficiency of one or more genes in the 2q23.1 region might be responsible for the common phenotypic features in these patients. In this study, we report the molecular and clinical characterisation of nine new 2q23.1 deletion patients and a clinical update on two previously reported patients. All patients were mentally retarded with pronounced speech delay and additional abnormalities including short stature, seizures, microcephaly and coarse facies. The majority of cases presented with stereotypic repetitive behaviour, a disturbed sleep pattern and a broad-based gait. These features led to the initial clinical impression of Angelman, Rett or Smith-Magenis syndromes in several patients. The overlapping 2q23.1 deletion region in all 15 patients comprises only one gene, namely, MBD5. Interestingly, MBD5 is a member of the methyl CpG-binding domain protein family, which also comprises MECP2, mutated in Rett's syndrome. Another gene in the 2q23.1 region, EPC2, was deleted in 12 patients who had a broader phenotype than those with a deletion of MBD5 only. EPC2 is a member of the polycomb protein family, involved in heterochromatin formation and might be involved in causing MR. Patients with a 2q23.1 microdeletion present with a variable phenotype and the diagnosis should be considered in mentally retarded children with coarse facies, seizures, disturbed sleeping patterns and additional specific behavioural problems.


Asunto(s)
Cromosomas Humanos Par 2/genética , Discapacidad Intelectual/genética , Eliminación de Secuencia , Síndrome de Angelman/genética , Cesárea , Niño , Mapeo Cromosómico , Femenino , Humanos , Recién Nacido , Unidades de Cuidado Intensivo Neonatal , Discapacidades para el Aprendizaje/genética , Masculino , Fenotipo , Síndrome de Rett/genética
18.
Nat Genet ; 41(9): 1037-42, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19668217

RESUMEN

Dandy-Walker malformation (DWM), the most common human cerebellar malformation, has only one characterized associated locus. Here we characterize a second DWM-linked locus on 6p25.3, showing that deletions or duplications encompassing FOXC1 are associated with cerebellar and posterior fossa malformations including cerebellar vermis hypoplasia (CVH), mega-cisterna magna (MCM) and DWM. Foxc1-null mice have embryonic abnormalities of the rhombic lip due to loss of mesenchyme-secreted signaling molecules with subsequent loss of Atoh1 expression in vermis. Foxc1 homozygous hypomorphs have CVH with medial fusion and foliation defects. Human FOXC1 heterozygous mutations are known to affect eye development, causing a spectrum of glaucoma-associated anomalies (Axenfeld-Rieger syndrome, ARS; MIM no. 601631). We report the first brain imaging data from humans with FOXC1 mutations and show that these individuals also have CVH. We conclude that alteration of FOXC1 function alone causes CVH and contributes to MCM and DWM. Our results highlight a previously unrecognized role for mesenchyme-neuroepithelium interactions in the mid-hindbrain during early embryogenesis.


Asunto(s)
Cromosomas Humanos Par 6 , Síndrome de Dandy-Walker/genética , Factores de Transcripción Forkhead/genética , Estudios de Casos y Controles , Cerebelo/diagnóstico por imagen , Cisterna Magna/diagnóstico por imagen , Estudios de Cohortes , Anomalías Congénitas/diagnóstico por imagen , Anomalías Congénitas/genética , Síndrome de Dandy-Walker/diagnóstico por imagen , Femenino , Eliminación de Gen , Dosificación de Gen , Duplicación de Gen , Ligamiento Genético , Variación Genética , Genotipo , Heterocigoto , Humanos , Masculino , Mutación , Fenotipo , Mapeo Físico de Cromosoma , Índice de Severidad de la Enfermedad , Ultrasonografía
19.
Nat Genet ; 41(1): 95-100, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19079258

RESUMEN

Abnormalities in WNT signaling are implicated in a broad range of developmental anomalies and also in tumorigenesis. Here we demonstrate that germline mutations in WTX (FAM123B), a gene that encodes a repressor of canonical WNT signaling, cause an X-linked sclerosing bone dysplasia, osteopathia striata congenita with cranial sclerosis (OSCS; MIM300373). This condition is typically characterized by increased bone density and craniofacial malformations in females and lethality in males. The mouse homolog of WTX is expressed in the fetal skeleton, and alternative splicing implicates plasma membrane localization of WTX as a factor associated with survival in males with OSCS. WTX has also been shown to be somatically inactivated in 11-29% of cases of Wilms tumor. Despite being germline for such mutations, individuals with OSCS are not predisposed to tumor development. The observed phenotypic discordance dependent upon whether a mutation is germline or occurs somatically suggests the existence of temporal or spatial constraints on the action of WTX during tumorigenesis.


Asunto(s)
Enfermedades del Desarrollo Óseo/genética , Enfermedades del Desarrollo Óseo/patología , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal/genética , Lesiones Precancerosas/genética , Proteínas Supresoras de Tumor/genética , Proteínas Adaptadoras Transductoras de Señales , Adolescente , Adulto , Empalme Alternativo/genética , Animales , Enfermedades del Desarrollo Óseo/complicaciones , Niño , Preescolar , Deleción Cromosómica , Cromosomas Humanos Par 11/genética , Embrión de Mamíferos/metabolismo , Femenino , Humanos , Lactante , Masculino , Ratones , Persona de Mediana Edad , Fenotipo , Mutación Puntual , Estructura Terciaria de Proteína , Esclerosis , Proteínas Supresoras de Tumor/química , Tumor de Wilms/genética , Inactivación del Cromosoma X/genética
20.
Clin Dysmorphol ; 17(4): 243-8, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18978651

RESUMEN

Loeys-Dietz syndrome (LDS) is a recently recognized arterial aneurysm syndrome because of heterozygous mutations in TGFBR1 or TGFBR2. Two subtypes have been delineated: LDS I, with features including craniosynostosis, hypertelorism and cleft palate and/or bifid uvula, and LDS II, wherein the face is reportedly normal. The most salient feature in LDS, whether type I or II, is of a generalized arteriopathy. The craniofacial features of LDS I are recognizable. No particular craniofacial phenotype has been reported in LDS II. We describe the evolution of facial features with age in seven LDS II patients harbouring a TGFBR1 or TGFBR2 mutation. Most patients had dolichocephaly, a tall broad forehead, frontal bossing, a high anterior hairline, hypoplastic supraorbital margins, a 'jowly' appearance (particularly in the first 3 years of life), translucent and redundant facial skin (often most pronounced in the periorbital region), prominent upper central incisors in late childhood/adulthood, and an open-mouthed myopathic face. The adult faces appeared prematurely aged. Although not exclusive to LDS II alone, recognition of these facial features may assist in the differentiation of LDS II from closely related conditions, and facilitate diagnosis and appropriate investigations and management.


Asunto(s)
Aneurisma de la Aorta/patología , Anomalías Craneofaciales/patología , Cara/anomalías , Desarrollo Maxilofacial , Adulto , Aneurisma de la Aorta/genética , Aneurisma de la Aorta/fisiopatología , Niño , Preescolar , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/fisiopatología , Femenino , Estudios de Seguimiento , Humanos , Masculino , Mutación , Linaje , Proteínas Serina-Treonina Quinasas/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA