Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Free Radic Biol Med ; 204: 215-225, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37156295

RESUMEN

KEAP1 promotes the ubiquitin-dependent degradation of NRF2 by assembling into a CUL3-dependent ubiquitin ligase complex. Oxidative and electrophilic stress inhibit KEAP1 allowing NRF2 to accumulate for the transactivation of stress response genes. To date there are no structures of the KEAP1-CUL3 interaction nor binding data to show the contributions of different domains to their binding affinity. We determined a crystal structure of the BTB and 3-box domains of human KEAP1 in complex with the CUL3 N-terminal domain that showed a heterotetrameric assembly with 2:2 stoichiometry. To support the structural data, we developed a versatile TR-FRET-based assay system to profile the binding of BTB-domain-containing proteins to CUL3 and determine the contribution of distinct protein features, revealing the importance of the CUL3 N-terminal extension for high affinity binding. We further provide direct evidence that the investigational drug CDDO does not disrupt the KEAP1-CUL3 interaction, even at high concentrations, but reduces the affinity of KEAP1-CUL3 binding. The TR-FRET-based assay system offers a generalizable platform for profiling this protein class and may form a suitable screening platform for ligands that disrupt these interactions by targeting the BTB or 3-box domains to block E3 ligase function.


Asunto(s)
Proteínas Cullin , Factor 2 Relacionado con NF-E2 , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Unión Proteica
2.
J Med Chem ; 63(17): 10061-10085, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32787083

RESUMEN

There are currently no effective chemotherapeutic drugs approved for the treatment of diffuse intrinsic pontine glioma (DIPG), an aggressive pediatric cancer resident in the pons region of the brainstem. Radiation therapy is beneficial but not curative, with the condition being uniformly fatal. Analysis of the genomic landscape surrounding DIPG has revealed that activin receptor-like kinase-2 (ALK2) constitutes a potential target for therapeutic intervention given its dysregulation in the disease. We adopted an open science approach to develop a series of potent, selective, orally bioavailable, and brain-penetrant ALK2 inhibitors based on the lead compound LDN-214117. Modest structural changes to the C-3, C-4, and C-5 position substituents of the core pyridine ring afforded compounds M4K2009, M4K2117, and M4K2163, each with a superior potency, selectivity, and/or blood-brain barrier (BBB) penetration profile. Robust in vivo pharmacokinetic (PK) properties and tolerability mark these inhibitors as advanced preclinical compounds suitable for further development and evaluation in orthotopic models of DIPG.


Asunto(s)
Receptores de Activinas Tipo I/antagonistas & inhibidores , Antineoplásicos/farmacología , Glioma Pontino Intrínseco Difuso/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/farmacocinética , Descubrimiento de Drogas , Femenino , Células HEK293 , Humanos , Masculino , Ratones SCID , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacocinética , Ratas Sprague-Dawley , Relación Estructura-Actividad
3.
Methods Enzymol ; 556: 405-24, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25857793

RESUMEN

Membrane proteins are the gatekeepers to the cell and are essential to the function of all cells, controlling the flow of molecules and information across the cell membrane. Much effort has been put into the development of systems for studying membrane proteins in simplified environments that nevertheless mimic their native lipid environment. After isolation and production of purified membrane proteins in detergent, it is often necessary to reconstitute them into a lipid structure such as liposome, nanodisc, or lipodisq. Each of these has the advantage of returning the protein to a defined lipid environment, and the choice of system depends on the application. Regardless of the system to be used, the fundamental process involves the removal of detergent and incorporation of the protein into a stable lipid system. This chapter details methodologies we have developed, mainly focussed on the model G protein-coupled receptor (GPCR) neurotensin receptor 1, and the GPCR-homologue and model, bacteriorhopdopsin.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Liposomas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Humanos , Membrana Dobles de Lípidos/química , Liposomas/química , Modelos Moleculares , Nanoestructuras/química
4.
FEBS Lett ; 588(24): 4701-7, 2014 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-25447525

RESUMEN

Neurotensin receptor type 1 (NTS1) is a G protein-coupled receptor (GPCR) that affects cellular responses by initiating a cascade of interactions through G proteins. The kinetic details for these interactions are not well-known. Here, NTS1-nanodisc-Gαs and Gαi1 interactions were studied. The binding affinities of Gαi1 and Gαs to NTS1 were directly measured by surface plasmon resonance (SPR) and determined to be 15±6 nM and 31±18 nM, respectively. This SPR configuration permits the kinetics of early events in signalling pathways to be explored and can be used to initiate descriptions of the GPCR interactome.


Asunto(s)
Receptores de Neurotensina/metabolismo , Transducción de Señal , Membrana Celular/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Cinética , Modelos Moleculares , Nanoestructuras , Conformación Proteica , Receptores de Neurotensina/química
5.
Methods Cell Biol ; 117: 341-57, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24143986

RESUMEN

It has been widely demonstrated that G protein-coupled receptors (GPCRs) can form dimers both in vivo and in vitro, a process that has functional consequences. These receptor-receptor interactions take place within a phospholipid bilayer, yet, generally, little is known of the requirements for specific lipids that mediate the dimerization process. Studying this phenomenon in vivo is challenging due to difficulties in modulating the lipid content of cell membranes. Therefore, in this chapter, we describe techniques for reconstitution of GPCRs into model lipid bilayers of defined composition. The concentrations of specific lipids and sterols can be precisely controlled in these liposomes, as well as maintaining an appropriate lipid-protein ratio to avoid artifactual interactions. Receptor dimerization in this system is monitored via Förster resonance energy transfer (FRET), which requires the use of fluorescently labeled receptors. We therefore also include protocols for labeling with appropriate fluorophores and determining the apparent FRET efficiency, a measurement of the extent of receptor dimerization. Understanding the lipid dependence of GPCR dimerization will be key in understanding how this process is regulated in the dynamic heterogeneous environment of the cell membrane.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Liposomas/metabolismo , Fosfolípidos/metabolismo , Receptores de Neurotensina/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Colorantes Fluorescentes/química , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Cinética , Liposomas/química , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Fosfolípidos/química , Unión Proteica , Multimerización de Proteína , Receptores de Neurotensina/química , Receptores de Neurotensina/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Sonicación
6.
Biochemistry ; 50(32): 7067-75, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21736346

RESUMEN

The canonical glutathione transferase (GST) fold found in many monomeric and dimeric proteins consists of two domains that differ in structure and conformational dynamics. However, no evidence exists that the two domains unfold/fold independently at equilibrium, indicating the significance of interdomain interactions in governing cooperativity between domains. Bioinformatics analyses indicate the interdomain interface of the GST fold is large, predominantly hydrophobic with a high packing density explaining cooperative interdomain behavior. Structural alignments reveal a topologically conserved lock-and-key interaction across the domain interface in which a bulky hydrophobic residue ("key") protrudes from the surface of the N-domain and inserts into a pocket ("lock") in the C-domain. To better understand the molecular basis for the contribution of interdomain interactions toward cooperativity within the GST fold in the absence of any influence from quaternary interactions, studies were done with two monomeric GST proteins: Escherichia coli Grx2 (EcGrx2) and human CLIC1 (hCLIC1). Replacing the methionine "key" residue with alanine is structurally nondisruptive, whereas it significantly diminishes the folding cooperativity of both proteins. The loss in cooperativity between domains in the mutants is reflected by a change in the equilibrium folding mechanism from a wild-type two-state process to a three-state process, populating a stable folding intermediate.


Asunto(s)
Secuencia Conservada , Glutatión Transferasa/química , Pliegue de Proteína , Secuencia de Bases , Sitios de Unión , Dicroismo Circular , Cristalografía por Rayos X , Cartilla de ADN , Glutatión Transferasa/genética , Glutatión Transferasa/aislamiento & purificación , Mutagénesis Sitio-Dirigida , Conformación Proteica , Espectrofotometría Ultravioleta
7.
Nano Lett ; 11(2): 657-60, 2011 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-21218848

RESUMEN

Single-particle electron cryomicroscopy permits structural characterization of noncrystalline protein samples, but throughput is limited by problems associated with sample preparation and image processing. Three-dimensional density maps are reconstructed from high resolution but noisy images of individual molecules. We show that self-assembled DNA nanoaffinity templates can create dense, nonoverlapping arrays of protein molecules, greatly facilitating data collection. We demonstrate this technique using a G-protein-coupled membrane receptor, a soluble G-protein, and a signaling complex of both molecules.


Asunto(s)
ADN/química , ADN/ultraestructura , Técnicas de Sonda Molecular/instrumentación , Nanotecnología/instrumentación , Análisis por Matrices de Proteínas/instrumentación , Análisis de Falla de Equipo
8.
Biochim Biophys Acta ; 1804(12): 2228-33, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20833278

RESUMEN

Cytosolic glutathione transferases (GSTs) are major detoxification enzymes in aerobes. Each subunit has two distinct domains and an active site consisting of a G-site for binding GSH and an H-site for an electrophilic substrate. While the active site is located at the domain interface, the role of the stability of this interface in the catalytic function of GSTs is poorly understood. Domain 1 of class alpha GSTs has a conserved tryptophan (Trp21) in helix 1 that forms a major interdomain contact with helices 6 and 8 in domain 2. Replacing Trp21 with an alanine is structurally non-disruptive but creates a cavity between helices 1, 6 and 8 thus reducing the packing density and van der Waals contacts at the domain interface. This results in destabilization of the protein and a marked reduction in catalytic activity. While functionality at the G-site is not adversely affected by the W21A mutation, the H-site becomes more accessible to solvent and less favorable for the electrophilic substrate 1-chloro-2,4-dinitrobenzene (CDNB). Not only does the mutation result in a reduction in the energy for stabilizing the transition state formed in the S(N)Ar reaction between the substrates GSH and CDNB, it also compromises the ability of the enzyme to form and stabilize a transition state analogue (Meisenheimer complex) formed between GSH and 1,3,5-trinitrobenzene (TNB). The study demonstrates that the stability of the domain-domain interface plays a role in mediating the catalytic functionality of the active site, particularly the H-site, of class alpha GSTs.


Asunto(s)
Dominio Catalítico , Glutatión Transferasa/química , Isoenzimas/química , Estructura Terciaria de Proteína , Secuencia de Aminoácidos , Sitios de Unión/genética , Biocatálisis , Dicroismo Circular , Cristalografía por Rayos X , Dinitroclorobenceno/química , Dinitroclorobenceno/metabolismo , Estabilidad de Enzimas , Glutatión/química , Glutatión/metabolismo , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Mutación , Unión Proteica , Desnaturalización Proteica , Homología de Secuencia de Aminoácido , Espectrometría de Fluorescencia , Especificidad por Sustrato , Temperatura , Triptófano/química , Triptófano/genética , Triptófano/metabolismo
9.
Biochemistry ; 47(44): 11674-81, 2008 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-18850721

RESUMEN

CLIC proteins function as anion channels when their structures convert from a soluble form to an integral membrane form. While very little is known about the mechanism of the conversion process, channel formation and activity are highly pH-dependent. In this study, the structural properties and conformational stability of CLIC1 were determined as a function of pH in the absence of membranes to improve our understanding of how its conformation changes when the protein encounters the acidic environment at the surface of a membrane. Although the global conformation and size of CLIC1 are not significantly altered by pH in the range of 5.5-8.2, equilibrium unfolding studies reveal that the protein molecule becomes destabilized at low pH, resulting in the formation of a highly populated intermediate with a solvent-exposed hydrophobic surface. Unlike the intermediates formed by many soluble pore-forming proteins for their insertion into membranes, the CLIC1 intermediate is not a molten globule. Acid-induced destabilization and partial unfolding of CLIC1 involve helix alpha1 which is the major structural element of the transmembrane region. We propose that the acidic environment encountered by CLICs at the surface of membranes primes the transmembrane region in the N-domain, thereby lowering the energy barrier for the conversion of soluble CLICs to their membrane-inserted forms.


Asunto(s)
Canales de Cloruro/química , Humanos , Concentración de Iones de Hidrógeno , Modelos Moleculares , Conformación Proteica , Desnaturalización Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Solubilidad , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA