Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancers (Basel) ; 13(23)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34884984

RESUMEN

Abnormal expression of microRNA miR-214-3p (miR-214) is associated with multiple cancers. In this study, we assessed the effects of CRISPR/Cas9 mediated miR-214 depletion in prostate cancer (PCa) cells and the underlying mechanisms. Knockdown of miR-214 promoted PCa cell proliferation, invasion, migration, epithelial-mesenchymal transition (EMT), and increased resistance to anoikis, a key feature of PCa cells that undergo metastasis. The reintroduction of miR-214 in miR-214 knockdown cells reversed these effects and significantly suppressed cell proliferation, migration, and invasion. These in vitro studies are consistent with the role of miR-214 as a tumor suppressor. Moreover, miR-214 knockout increased tumor growth in PCa xenografts in nude mice supporting its anti-oncogenic role in PCa. Knockdown of miR-214 increased the expression of its target protein, Protein Tyrosine Kinase 6 (PTK6), a kinase shown to promote oncogenic signaling and tumorigenesis in PCa. In addition, miR-214 modulated EMT as exhibited by differential regulation of E-Cadherin, N-Cadherin, and Vimentin both in vitro and in vivo. RNA-seq analysis of miR-214 knockdown cells revealed altered gene expression related to PCa tumor growth pathways, including EMT and metastasis. Collectively, our findings reveal that miR-214 is a key regulator of PCa oncogenesis and is a potential novel therapeutic target for the treatment of the disease.

2.
Carcinogenesis ; 42(5): 772-783, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33710266

RESUMEN

Prostate cancer (PCa) constitutes a serious health challenge and remains one of the main causes of cancer-related death among men. The more aggressive form of the disease has been attributed to androgen independence, resulting in a lack of response to androgen deprivation therapy and sustained activation of other growth pathways. The scaffold proteins ß-arrestin 1 and 2 (ßarr1 and ßarr2), which are known to mediate G protein-coupled receptor desensitization and internalization, were also shown to modulate prostate tumorigenesis. ßarr1 is significantly overexpressed (>4-fold) in PCa cells relative to ßarr2. In this study, we investigated the effect of ßarr1 overexpression in PCa development and progression using the mouse and human PCa cell xenografts, and autochthonous transgenic adenocarcinoma of the mouse prostate (TRAMP) models deficient in ß-arrestin depletion of ßarr1 in TRAMP mice (TRAMP/ßarr1-/-) increased PCa growth and decreased overall survival relative to control TRAMP or TRAMP/ßarr2-/- animals. Prostate tissues from TRAMP/ßarr1-/- tumors displayed an increase in androgen receptor (AR) expression, whereas overexpression of ßarr1 in TRAMP-C1 (TRAMP-C1-ßarr1-GFP) which derived from TRAMP decreased AR expression, cell proliferation and tumor growth in nude mice xenografts, relative to control TRAMP-C1-GFP. Knockdown of ßarr1 expression in human MDA PCa 2b cells (MDA PCa 2b-ßarr1-/-) also decreased AR expression cell proliferation and tumor growth relative to control (MDA PCa 2b-Sham) cells. Interestingly, both TRAMP-C1-ßarr1-GFP and MDA PCa 2b-ßarr1-/- xenografts showed a decrease in AKT phosphorylation but an increase in MAPK activation. Altogether, the data indicate that the effect of ßarr1 in modulating AR signaling to regulate PCa aggressiveness is cell and host autonomous.


Asunto(s)
Carcinogénesis/genética , Neoplasias de la Próstata/genética , Miembro 25 de Receptores de Factores de Necrosis Tumoral/genética , beta-Arrestina 1/genética , Arrestina beta 2/genética , Animales , Animales Modificados Genéticamente , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Xenoinjertos , Humanos , Masculino , Ratones , Neoplasias de la Próstata/patología , Receptores Androgénicos/genética , Transducción de Señal
3.
Int J Mol Sci ; 21(12)2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32585812

RESUMEN

The consequences of prostate cancer metastasis remain severe, with huge impact on the mortality and overall quality of life of affected patients. Despite the convoluted interplay and cross talk between various cell types and secreted factors in the metastatic process, cytokine and chemokines, along with their receptors and signaling axis, constitute important factors that help drive the sequence of events that lead to metastasis of prostate cancer. These proteins are involved in extracellular matrix remodeling, epithelial-mesenchymal-transition, angiogenesis, tumor invasion, premetastatic niche creation, extravasation, re-establishment of tumor cells in secondary organs as well as the remodeling of the metastatic tumor microenvironment. This review presents an overview of the main cytokines/chemokines, including IL-6, CXCL12, TGFß, CXCL8, VEGF, RANKL, CCL2, CX3CL1, IL-1, IL-7, CXCL1, and CXCL16, that exert modulatory roles in prostate cancer metastasis. We also provide extensive description of their aberrant expression patterns in both advanced disease states and metastatic sites, as well as their functional involvement in the various stages of the prostate cancer metastatic process.


Asunto(s)
Quimiocinas/metabolismo , Citocinas/metabolismo , Neoplasias de la Próstata/patología , Humanos , Masculino , Metástasis de la Neoplasia , Neoplasias de la Próstata/metabolismo
4.
Carcinogenesis ; 40(12): 1504-1513, 2019 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-31215992

RESUMEN

Prostate cancer (PCa) is a leading cause of cancer death among men, with greater prevalence of the disease among the African American population in the USA. Activator of G-protein signaling 3 (AGS3/G-protein signaling modulator 1) was shown to be overexpressed in prostate adenocarcinoma relative to the prostate gland. In this study, we investigated the correlation between AGS3 overexpression and PCa malignancy. Immunoblotting analysis and real-time quantitative-PCR showed increase in AGS3 expression in the metastatic cell lines LNCaP (~3-fold), MDA PCa 2b (~2-fold), DU 145 (~2-fold) and TRAMP-C1 (~20-fold) but not in PC3 (~1-fold), relative to control RWPE-1. Overexpression of AGS3 in PC3, LNCaP and MDA PCa 2b enhanced tumor growth. AGS3 contains seven tetratricopeptide repeats (TPR) and four G-protein regulatory (GPR) motifs. Overexpression of the TPR or the GPR motifs in PC3 cells had no effect in tumor growth. Depletion of AGS3 in the TRAMP-C1 cells (TRAMP-C1-AGS3-/-) decreased cell proliferation and delayed wound healing and tumor growth in both C57BL/6 (~3-fold) and nude mice xenografts, relative to control TRAMP-C1 cells. TRAMP-C1-AGS3-/- tumors also exhibited a marked increase (~5-fold) in both extracellular signal-regulated kinase (ERK) 1/2 and P38 mitogen-activated protein kinase (MAPK) activation, which correlated with a significant increase (~3-fold) in androgen receptor (AR) expression, relative to TRAMP-C1 xenografts. Interestingly, overexpression of AGS3 in TRAMP-C1-AGS3-/- cells inhibited ERK activation and AR overexpression as compared with control TRAMP-C1 cells. Taken together, the data indicate that the effect of AGS3 in prostate cancer development and progression is probably mediated via a MAPK/AR-dependent pathway.


Asunto(s)
Carcinogénesis/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Neoplasias de la Próstata/patología , Animales , Línea Celular Tumoral , Progresión de la Enfermedad , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Neoplasias de la Próstata/metabolismo , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA