RESUMEN
Objectives: We report prolonged mpox (>14 weeks) in a patient with HIV complicated by deep tissue MPXV infection despite two courses of tecovirimat treatment. Methods: MPXV-DNA levels in lesional swabs, blood and tissue were quantified by qPCR. Anti-MPXV antibodies were analyzed by IF and VNT. Infectivity was assessed by virus isolation. Sequencing was performed to assess for tecovirimat resistance mutations and quantitative results were obtained by digital SNP PCR (A288P). Results: The patient's clinical condition improved significantly during both tecovirimat treatment courses (each 14 days), yet we observed persistent MPXV-DNA in lesions accompanied by viremia (mean 1.4 × 104 copies/ml) for >14 weeks. A deep tissue infection driven by MPXV complicated the clinical course (week 9). Presence of infectious virus within the tissue and high infectious titers (>106 PFU/ml) were observed. The VP37 protein sequence revealed A288P substitutions. Digital PCR showed 1 % and less abundance (A288P) during first treatment course (blood and swabs), with increasing proportion during second course (week 8-9; 28 % in blood and swabs), however the mutation was absent in samples from deep tissue infection and MPXV isolates (week 9) indicating compartimentalization. Morphological fully enveloped MPXV partices visualized by TEM in necrotic areas suggesting tecovirimat treatment failure in the deep tissue compartment. Conclusion: Our data provide evidence that Tecovirimat treatment selects for compartimentalized viral mutations (A288P). While the patient clinically benefited from repeated tecovirimat course, emergence of viral muations and deep tissue infection emphasizes the challenge and importance of infectious disease monitoring in mpox patient management.
RESUMEN
The emergence and spread of antibiotic resistance represent a growing threat to public health. Of particular concern is the appearance of ß-lactamases, which are capable to hydrolyze and inactivate the most important class of antibiotics, the ß-lactams. Effective ß-lactamase inhibitors and mechanistic insights into their action are central in overcoming this type of resistance, and in this context boronate-based ß-lactamase inhibitors were just recently approved to treat multidrug-resistant bacteria. Using boric acid as a simplified inhibitor model, time-resolved serial crystallography was employed to obtain mechanistic insights into binding to the active site serine of ß-lactamase CTX-M-14, identifying a reaction time frame of 80-100 ms. In a next step, the subsequent 1,2-diol boric ester formation with glycerol in the active site was monitored proceeding in a time frame of 100-150 ms. Furthermore, the displacement of the crucial anion in the active site of the ß-lactamase was verified as an essential part of the binding mechanism of substrates and inhibitors. In total, 22 datasets of ß-lactamase intermediate complexes with high spatial resolution of 1.40-2.04 Å and high temporal resolution range of 50-10,000 ms were obtained, allowing a detailed analysis of the studied processes. Mechanistic details captured here contribute to the understanding of molecular processes and their time frames in enzymatic reactions. Moreover, we could demonstrate that time-resolved crystallography can serve as an additional tool for identifying and investigating enzymatic reactions.
RESUMEN
Mortality of patients hospitalized with COVID-19 has remained high during the consecutive SARS-CoV-2 pandemic waves. Early discrimination of patients at high mortality risk is crucial for optimal patient care. Symmetric (SDMA) and asymmetric dimethylarginine (ADMA) have been proposed as possible biomarkers to improve risk prediction of COVID-19 patients. We measured SDMA, ADMA, and other L-arginine-related metabolites in 180 patients admitted with COVID-19 in four German university hospitals as compared to 127 healthy controls. Patients were treated according to accepted clinical guidelines and followed-up until death or hospital discharge. Classical inflammatory markers (leukocytes, CRP, PCT), renal function (eGFR), and clinical scores (SOFA) were taken from hospital records. In a small subgroup of 23 COVID-19 patients, sequential blood samples were available and analyzed for biomarker trends over time until 14 days after admission. Patients had significantly elevated SDMA, ADMA, and L-ornithine and lower L-citrulline concentrations than controls. Within COVID-19 patients, SDMA and ADMA were significantly higher in non-survivors (n = 41, 22.8%) than in survivors. In ROC analysis, the optimal cut-off to discriminate non-survivors from survivors was 0.579 µmol/L for SDMA and 0.599 µmol/L for ADMA (both p < 0.001). High SDMA and ADMA were associated with odds ratios for death of 11.45 (3.37-38.87) and 5.95 (2.63-13.45), respectively. Analysis of SDMA and ADMA allowed discrimination of a high-risk (mortality, 43.7%), medium-risk (15.1%), and low-risk group (3.6%); risk prediction was significantly improved over classical laboratory markers. We conclude that analysis of ADMA and SDMA after hospital admission significantly improves risk prediction in COVID-19.
Asunto(s)
Arginina , Biomarcadores , COVID-19 , Hospitalización , Humanos , Arginina/análogos & derivados , Arginina/sangre , COVID-19/mortalidad , COVID-19/sangre , Masculino , Femenino , Persona de Mediana Edad , Anciano , Biomarcadores/sangre , SARS-CoV-2/aislamiento & purificación , Alemania/epidemiología , Pronóstico , Adulto , Anciano de 80 o más Años , Factores de RiesgoRESUMEN
BACKGROUND: Viral respiratory Infections pose a health risk, especially to vulnerable patient populations. Effective testing programs can detect and differentiate these infections at an early stage, which is particularly important for high-risk clinical departments. The objective of this study was to develop and validate a multiplex PCR-panel for 16 different respiratory viruses on a fully-automated high-throughput platform. METHODS: Three multiplex-PCR assays were designed to run on the cobas5800/6800/8800 systems, consolidating 16 viral targets: RESP1: SARS-CoV-2, influenza-A/B, RSV; RESP2: hMPV, hBoV, hAdV, rhino-/ENV; RESP3: HPIV-1-4, hCoV-229E, hCoV-NL63, hCoV-OC43, hCoV-HKU1. Analytic performance was evaluated using digital-PCR based standards and international reference material. Clinical performance was determined by comparing results from clinical samples with reference assays. RESULTS: Analytical sensitivity (i.e. lower limit of detection (LoD), 95 % probability of detection) was determined as follows: SARS-CoV-2: 29.3 IU/ml, influenza-A: 179.9 cp/ml, influenza-B: 333.9 cp/ml and RSV: 283.1 cp/ml. LoDs of other pathogens ranged between 9.4 cp/ml (hCoV-NL63) and 21,419 cp/ml (HPIV-2). Linearity was verified over 4-7 log-steps with pooled standard differentials (SD) ranging between 0.18-0.70ct. Inter-/intra-run variability (precision) was assessed for all targets over 3 days. SDs ranged between 0.13-0.74ct. Positive agreement in clinical samples was 99.4 % and 95 % for SARS-CoV-2 and influenza-A respectively. Other targets were in the 80-100 % range. Negative agreement varied between 96.3-100 %. DISCUSSION: Lab-developed tests are a key factor for effective clinical diagnostics. The multiplex panel presented in this study demonstrated high performance and provides an easily scalable high-throughput solution for respiratory virus testing, e.g. for testing in high-risk patient populations.
Asunto(s)
Reacción en Cadena de la Polimerasa Multiplex , Infecciones del Sistema Respiratorio , Sensibilidad y Especificidad , Humanos , Reacción en Cadena de la Polimerasa Multiplex/métodos , Infecciones del Sistema Respiratorio/virología , Infecciones del Sistema Respiratorio/diagnóstico , Ensayos Analíticos de Alto Rendimiento/métodos , Virus/aislamiento & purificación , Virus/genética , Virus/clasificación , Virosis/diagnóstico , Virosis/virología , Automatización de Laboratorios/métodos , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , COVID-19/diagnóstico , COVID-19/virología , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normasRESUMEN
Since its introduction in 2017, MINFLUX nanoscopy has shown that it can visualise fluorescent molecules with an exceptional localisation precision of a few nanometres. In this overview, we provide a brief insight into technical implementations, fluorescent marker developments and biological studies that have been conducted in connection with MINFLUX imaging and tracking. We also formulate ideas on how MINFLUX nanoscopy and derived technologies could influence bioimaging in the future. This insight is intended as a general starting point for an audience looking for a brief overview of MINFLUX nanoscopy from theory to application.
RESUMEN
Vancomycin resistant enterococci (VRE) are a leading cause of ICU-acquired bloodstream infections in Europe. The bacterial load in enteral colonization may be associated with a higher probability of transmission. Here, we aimed to establish a quantitative vanA/vanB DNA real-time PCR assay on a high-throughput system. Limits of detection (LOD), linear range and precision were determined using serial bacterial dilutions. LOD was 46.9 digital copies (dcp)/ml for vanA and 60.8 dcp/ml for vanB. The assay showed excellent linearity between 4.7 × 101 and 3.5 × 105 dcp/ml (vanA) and 6.7 × 102 and 6.7 × 105 dcp/ml (vanB). Sensitivity was 100% for vanA and vanB, with high positive predictive value (PPV) for vanA (100%), but lower PPV for vanB (34.6%) likely due to the presence of vanB DNA positive anerobic bacteria in rectal swabs. Using the assay on enriched VRE broth vanB PPV increased to 87.2%. Quantification revealed median 2.0 × 104 dcp/ml in PCR positive but VRE culture negative samples and median 9.1 × 104 dcp/ml in VRE culture positive patients (maximum: 107 dcp/ml). The automated vanA/B_UTC assay can be used for vanA/vanB detection and quantification in different diagnostic settings and may support future clinical studies assessing the impact of bacterial load on risk of infection and transmission.
Asunto(s)
Infecciones por Bacterias Grampositivas , Enterococos Resistentes a la Vancomicina , Humanos , Enterococos Resistentes a la Vancomicina/genética , Valor Predictivo de las Pruebas , Reacción en Cadena en Tiempo Real de la Polimerasa , ADN , ADN Bacteriano/genética , ADN Bacteriano/análisis , Proteínas Bacterianas/genética , Infecciones por Bacterias Grampositivas/microbiología , AntibacterianosRESUMEN
For effective infection control measures for Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG), a reliable tool for screening and diagnosis is essential. Here, we aimed to establish and validate a multiplex PCR assay on an automated system using a dual-target approach for the detection of CT/NG and differentiation between lymphogranuloma venereum (LGV) and non-LGV from genital and extra-genital specimens. Published primer/probe sets (CT: pmpH, cryptic plasmid; NG: porA, opa) were modified for the cobas 5800/6800/8800. Standards quantified by digital PCR were used to determine linearity and lower limit of detection (LLoD; eSwab, urine). For clinical validation, prospective samples (n = 319) were compared with a CE-marked in vitro diagnostics (CE-IVD) assay. LLoDs ranged from 21.8 to 244 digital copies (dcp)/mL and 10.8 to 277 dcp/mL in swab and urine, respectively. A simple linear regression analysis yielded slopes ranging from -4.338 to -2.834 and Pearson correlation coefficients from 0.956 to 0.994. Inter- and intra-run variability was <0.5 and <1 cycle threshold (ct), respectively. No cross-reactivity was observed (n = 42). Clinical validation showed a sensitivity of 94.74% (95% confidence interval (CI): 87.23%-97.93%) and 95.51% (95% CI: 89.01%-98.24%), a specificity of 99.59% (95% CI: 97.71%-99.98%) and 99.57% (95% CI: 97.58%-99.98%), positive predictive values of 89.91% (estimated prevalence: 3.7%; 95% CI: 80.91%-95.6%) and 88.61% (estimated prevalence: 3.4%; 95% CI: 80.18%-94.34%), and negative predictive values of 99.81% (95% CI: 98.14%-100%) and 99.85% (95% CI: 98.14%-100%) for the detection of CT and NG, respectively. In conclusion, we established a dual-target, internally controlled PCR on an automated system for the detectiwon of CT/NG from genital and extra-genital specimens. Depending on local regulations, the assay can be used as a screening or a confirmatory/typing assay.IMPORTANCEChlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) represent a major global health burden, with the World Health Organization estimating that >128 million and >82 million people, respectively, were newly infected in 2020. For effective infection control measures, a reliable tool for sensitive diagnosis and screening of CT/NG is essential. We established a multiplex PCR assay for the detection of CT/NG and simultaneous discrimination between lymphogranuloma venereum (LGV) and non-LGV strains, which has been validated for genital and extra-genital specimens on a fully automated system. To increase assay sensitivity, a dual-target approach has been chosen for both pathogens. This strategy reduces false-positive results in oropharyngeal swabs due to the detection of commensal N. species that may harbor NG DNA fragments targeted in the PCR due to horizontal gene transmission following previous infection. In sum, the established assay provides a powerful tool for use as either a screening/diagnostic or a typing/confirmatory assay.
Asunto(s)
Gonorrea , Linfogranuloma Venéreo , Humanos , Linfogranuloma Venéreo/diagnóstico , Neisseria gonorrhoeae/genética , Chlamydia trachomatis/genética , Reacción en Cadena de la Polimerasa Multiplex , Serotipificación , Estudios Prospectivos , Gonorrea/diagnóstico , Sensibilidad y EspecificidadRESUMEN
Super-resolution fluorescence microscopy technologies developed over the past two decades have pushed the resolution limit for fluorescently labeled molecules into the nanometer range. These technologies have the potential to study bacterial structures, for example, macromolecular assemblies such as secretion systems, with single-molecule resolution on a millisecond time scale. Here we review recent applications of super-resolution fluorescence microscopy with a focus on bacterial secretion systems. We also describe MINFLUX fluorescence nanoscopy, a relatively new technique that promises to one day produce molecular movies of molecular machines in action.
Asunto(s)
Bacterias , Nanotecnología , Microscopía Fluorescente/métodos , Nanotecnología/métodosRESUMEN
PURPOSE: Hypertoxigenic Streptococcus pyogenes emm1 lineage M1UK has recently been associated with upsurges of invasive infections and scarlet fever in several countries, but whole-genome sequencing surveillance data of lineages circulating in Germany is lacking. In this study, we investigated recent iGAS isolates from our laboratory at a German tertiary care center for the presence of the M1UK lineage. METHODS: Whole-genome sequencing was employed to characterize a collection of 47 consecutive non-copy isolates recovered from blood cultures (21) and tissue samples (26) in our laboratory between October 2022 and April 2023. RESULTS: M protein gene (emm) typing distinguished 14 different emm types, with emm1 (17) being the dominant type. Single-nucleotide polymorphism (SNP) analysis confirmed the presence of all 27 SNPs characteristic for the M1UK lineage in 14 of 17 emm1 isolates. CONCLUSION: This study has shown for the first time that M1UK is present in Germany and might constitute a driving force in the observed surge of GAS infections. This observation mirrors developments in the UK and other countries and underscores the importance of WGS surveillance to understand the epidemiology of GAS.
Asunto(s)
Infecciones Estreptocócicas , Streptococcus pyogenes , Humanos , Streptococcus pyogenes/genética , Centros de Atención Terciaria , Genotipo , Proteínas Portadoras , Reino Unido , Infecciones Estreptocócicas/epidemiología , Antígenos Bacterianos/genética , Proteínas de la Membrana Bacteriana Externa/genéticaRESUMEN
PURPOSE: Beta-D-Glucan (BDG) testing has been suggested to support the diagnosis of candidemia and invasive candidiasis. The actual benefit in critically ill high-risk patients in intensive care units (ICU) has not been verified so far. METHODS: In ICU patients receiving empirical echinocandin treatment for suspected invasive candidiasis (IC), serial BDG testing using the Fujifilm Wako Beta-Glucan Test was performed, starting on the first day of echinocandin administration and every 24-48 h afterwards. Diagnostic accuracy was determined for single testing and serial testing strategies using a range of cut-off values. In addition, we compared the added value of these testing strategies when their results were introduced as additional predictors into a multivariable logistic regression model controlling for established risk factors of IC. RESULTS: A total of 174 ICU patients, forty-six of which (25.7%) classified as cases of IC, were included in our study. Initial BDG testing showed moderate sensitivity (74%, 95%CI 59-86%) and poor specificity (45%, 95% CI 36-54%) for IC which could hardly be improved by follow-up testing. While raw BDG values or test results obtained with very high thresholds improved the predictive performance of our multivariable logistic regression model for IC, neither single nor serial testing with the manufacturer-proposed low-level cut-off showed substantial benefit. CONCLUSIONS: In our study of critically ill intensive care patients at high risk for candidemia or invasive candidiasis, diagnostic accuracy of BDG testing was insufficient to inform treatment decisions. Improved classification was only achieved for cases with very high BDG values.
Asunto(s)
Candidemia , Candidiasis Invasiva , Candidiasis , Proteoglicanos , beta-Glucanos , Humanos , Candidemia/diagnóstico , Glucanos , Estudios Prospectivos , Enfermedad Crítica , Sensibilidad y Especificidad , Candidiasis Invasiva/diagnóstico , Candidiasis Invasiva/tratamiento farmacológico , Cuidados Críticos , Equinocandinas/uso terapéutico , Unidades de Cuidados IntensivosRESUMEN
The multifunctional Yersinia effector YopM inhibits effector triggered immunity and increases production of the anti-inflammatory cytokine Interleukin-10 (IL-10) to suppress the host immune response. Previously it was shown that YopM induces IL-10 gene expression by elevating phosphorylation of the serine-threonine kinase RSK1 in the nucleus of human macrophages. Using transcriptomics, we found that YopM strongly affects expression of genes belonging to the JAK-STAT signaling pathway. Further analysis revealed that YopM mediates nuclear translocation of the transcription factor Stat3 in Y. enterocolitica infected macrophages and that knockdown of Stat3 inhibited YopM-induced IL-10 gene expression. YopM-induced Stat3 translocation did not depend on autocrine IL-10, activation of RSK1 or tyrosine phosphorylation of Stat3. Thus, besides activation of RSK1, stimulation of nuclear translocation of Stat3 is another mechanism by which YopM increases IL-10 gene expression in macrophages.
Asunto(s)
Proteínas Bacterianas , Interleucina-10 , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Macrófagos/metabolismo , Regulación de la Expresión Génica , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , FosforilaciónRESUMEN
Here, we describe the complete genome sequence of a Staphylococcus condimenti blood culture isolate from a catheter-related bloodstream infection in a male patient.
RESUMEN
Pathogen identification is key in septic arthritis. Culture-based techniques are challenging, especially when patients have been pretreated with antibiotics or when difficult-to-culture bacteria are encountered. The BioFire joint infection assay (BJA) is a multiplex PCR panel which detects 31 of the most prevalent bacterial and fungal pathogens causing septic arthritis. Here, 123 cryoconserved contemporary synovial fluid samples from 120 patients underwent BJA analysis. Results were compared to those of culture-based diagnostics (standard of care [SOC]). Clinical data were collected, and the possible impact of the molecular diagnostic application on patient management was evaluated. Fifteen of 123 synovial fluid cultures grew bacterial pathogens. All on-panel pathogens (9/15) were correctly identified by the BJA. The BJA identified four additional bacterial pathogens in four SOC-negative cases. BJA sensitivity and specificity were 100% (95% confidence interval [CI], 69.2% to 100%) and 100% (95% CI, 96.8% to 100%), respectively. Compared to the SOC, the BJA would have resulted in faster provision of species identification and molecular susceptibility data by 49 h and 99 h, respectively. Clinical data analysis indicates that in BJA-positive cases, faster species ID could have led to timelier optimization of antibiotic therapy. This retrospective study demonstrates high sensitivity and specificity of the BJA to detect on-panel organisms in bacterial arthritis. The usefulness of the BJA in prosthetic-joint infections is limited, as important pathogens (i.e., coagulase negative staphylococci and Cutibacterium acnes) are not covered. Evidence from patient data analysis suggests that the assay might prove valuable for optimizing patient management in acute arthritis related to fastidious organisms or for patients who received antibiotics prior to specimen collection.
Asunto(s)
Artritis Infecciosa , Humanos , Estudios Retrospectivos , Artritis Infecciosa/diagnóstico , Artritis Infecciosa/tratamiento farmacológico , Artritis Infecciosa/microbiología , Bacterias/genética , Reacción en Cadena de la Polimerasa Multiplex/métodosRESUMEN
BACKGROUND: There is no recent epidemiological data on HIV infection in Gabon, particularly in pregnant women. To close this gap, an HIV-prevalence survey was conducted among Gabonese pregnant women, followed by a cross-sectional case-control study in which the prevalence of various co-infections was compared between HIV-positive and HIV-negative pregnant women. METHODS: Between 2018 and 2019, data for the HIV-prevalence survey were collected retrospectively in 21 Gabonese antenatal care centres (ANCs). Subsequently, for the prospective co-infection study, all HIV-positive pregnant women were recruited who frequented the ANC in Lambaréné and a comparator sub-sample of HIV-negative pregnant women was recruited; these activities were performed from February 2019 to February 2020. The mean number of co-infections was ascertained and compared between HIV-positive and HIV-negative women. Additionally, the odds for being co-infected with at least one co-infection was evaluated and compared between HIV-positive and HIV-negative women. RESULTS: HIV-positivity was 3.9% (646/16,417) among pregnant women. 183 pregnant women were recruited in the co-infection study. 63% of HIV-positive and 75% of HIV-negative pregnant women had at least one co-infection. There was a trend indicating that HIV-negative women were more often co-infected with sexually transmitted infections (STIs) than HIV-positive women [mean (standard deviation, SD): 2.59 (1.04) vs 2.16 (1.35), respectively; P = 0.056]; this was not the case for vector-borne infections [mean (SD): 0.47 (0.72) vs 0.43 (0.63), respectively; P = 0.59]. CONCLUSIONS: Counterintuitively, the crude odds for concomitant STIs was lower in HIV-positive than in HIV-negative women. The change of magnitude from the crude to adjusted OR is indicative for a differential sexual risk factor profile among HIV-positive and HIV-negative women in this population. This might potentially be explained by the availability of sexual health care counselling for HIV-positive women within the framework of the national HIV control programme, while no such similar overall service exists for HIV-negative women. This highlights the importance of easy access to sexual healthcare education programmes for all pregnant women irrespective of HIV status.
Asunto(s)
Coinfección , Infecciones por VIH , VIH-1 , Complicaciones Infecciosas del Embarazo , Enfermedades de Transmisión Sexual , Femenino , Embarazo , Humanos , Infecciones por VIH/complicaciones , Infecciones por VIH/epidemiología , Mujeres Embarazadas , Estudios Transversales , Complicaciones Infecciosas del Embarazo/epidemiología , Coinfección/epidemiología , Estudios Prospectivos , Estudios Retrospectivos , Estudios de Casos y Controles , Gabón/epidemiología , Enfermedades de Transmisión Sexual/epidemiología , PrevalenciaRESUMEN
Here we report the in vivo development of cefiderocol resistance within 11 days after therapy initiation in a critically ill patient with bloodstream infection, infection of peri-anal fistula, and pneumonia caused by a VIM-2 harbouring, carbapenem-resistant Pseudomonas aeruginosa. Compared to a cefiderocol-naïve P. aeruginosa blood culture isolate, agar diffusion susceptibility testing found a reduced cefiderocol inhibition zone diameter in a P. aeruginosa recovered from peri-anal abscess tissue cultures after initiation of cefiderocol therapy. Subsequent whole-genome sequencing suggested that both isolates were of clonal origin. Comparison of genomes found an accumulation of missense mutations within pvdP, pvdE, pvdJ, and pvdD (i.e. genes associated with biosynthesis of pyoverdine), the main siderophore produced by P. aeruginosa. Quantification of pyoverdine production under iron-depleted conditions showed a significantly (P = 0.0003) higher pyoverdine production by the cefiderocol-resistant isolate. While pyoverdine quantity alone appears not to be decisive for cefiderocol resistance, the reported case highlights the potentially rapid emergence of cefiderocol resistance in P. aeruginosa and points towards a potential involvement of iron up-take systems in this process.
Asunto(s)
Antibacterianos , Pseudomonas aeruginosa , Humanos , Antibacterianos/uso terapéutico , Hierro/metabolismo , Carbapenémicos/farmacología , Mutación , CefiderocolRESUMEN
The aim of this systematic review was to address the question if short antibiotic treatment (SAT; at least 4 but <12 weeks) versus long antibiotic treatment (LAT) affects outcomes in prosthetic joint infections (PJIs). Database research (Medline, Embase, Web of Science, Scopus, Cochrane) retrieved 3740 articles, of which 10 studies were included in the analysis. Compared to LAT, 11% lower odds of treatment failure in the SAT group were found, although the difference was not statistically significant (pooled odds ratio, 0.89 [95% confidence interval, .53-1.50]). No difference in treatment failure was found between SAT and LAT once stratified by type of surgery, studies conducted in the United States versus Europe, study design, and follow-up. There is still no conclusive evidence that antibiotic treatment of PJIs for 12 weeks or longer is associated with better outcomes, irrespective of the type of surgical procedure. Most recent, high-quality studies tend to favor longer antibiotic courses, making them preferable in most situations.
RESUMEN
Members of the Erwiniaceae family very rarely cause infections in humans. Here we describe the first case of a bloodstream infection due to Mixta hanseatica sp. nov., a novel member of the Erwiniaceae family.
RESUMEN
Cutibacterium acnes, formerly known as Propionibacterium acnes, is a commensal of the human pilosebaceous unit but also causes deep-seated infection, especially in the context of orthopedic and neurosurgical foreign materials. Interestingly, little is known about the role of specific pathogenicity factors for infection establishment. Here, 86 infection-associated and 103 commensalism-associated isolates of C. acnes were collected from three independent microbiology laboratories. We sequenced the whole genomes of the isolates for genotyping and a genome-wide association study (GWAS). We found that C. acnes subsp. acnes IA1 was the most significant phylotype among the infection isolates (48.3% of all infection isolates; odds ratio [OR] = 1.98 for infection). Among the commensal isolates, C. acnes subsp. acnes IB was the most significant phylotype (40.8% of all commensal isolates; OR = 0.5 for infection). Interestingly, C. acnes subsp. elongatum (III) was rare overall and did not occur at all in infection. The open reading frame-based GWAS (ORF-GWAS) did not show any loci with a strong signal for infection association (no P values of ≤0.05 after adjustment for multiple testing; no logarithmic OR [logOR] of ≥|2|). We concluded that all subspecies and phylotypes of C. acnes, possibly with the exception of C. acnes subsp. elongatum, are able to cause deep-seated infection given favorable conditions, most importantly related to inserted foreign material. Genetic content appears to have a small effect on the likelihood of infection establishment, and functional studies are needed to understand the individual factors contributing to deep-seated infections caused by C. acnes. IMPORTANCE Opportunistic infections emerging from human skin microbiota are of ever-increasing importance. Cutibacterium acnes, being abundant on the human skin, may cause deep-seated infections (e.g., device-associated infections). Differentiation between invasive (i.e., clinically significant) C. acnes isolates and sole contaminants is often difficult. Identification of genetic markers associated with invasiveness not only would strengthen our knowledge related to pathogenesis but also could open ways to selectively categorize invasive and contaminating isolates in the clinical microbiology lab. We show that in contrast to other opportunistic pathogens (e.g., Staphylococcus epidermidis), invasiveness is apparently a broadly distributed ability across almost all C. acnes subspecies and phylotypes. Thus, our work strongly supports an approach in which clinical significance is judged from clinical context rather than by detecting specific genetic traits.
RESUMEN
In spondylodiscitis, pathogen identification is important to guide therapy strategies. Here the use of an rDNA PCR assay (Molzym UMDSelectNA) for pathogen detection in spondylodiscitis was evaluated in 182 specimens from 124 spondylodiscitis patients. In 81% of specimens rDNA PCR and conventional culture produced concordant results. Compared to conventional culture, sensitivity and specificity of rDNA PCR were 75% and 83.9%, respectively. The rDNA PCR performed better than conventional culture in identification of Streptococcus spp.. However, overall sensitivity was suboptimal, e.g., in cases with low bacterial burden, and only 5 of 124 patients (4%) received a microbiological diagnosis by employing rDNA PCR. Thus, the added value of routine use of rDNA PCR on spondylodiscitis specimens is limited. Targeted use of the assay in culture-negative cases may be efficient and moderately increase diagnostic yield. The need for susceptibility information implies that 16S rDNA PCR may only be used as an add-on tool to culture.
Asunto(s)
Discitis , Humanos , Discitis/diagnóstico , Reacción en Cadena de la Polimerasa/métodos , Bacterias/genética , Técnicas de Amplificación de Ácido Nucleico , Sensibilidad y Especificidad , ADN Ribosómico/genética , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , ADN Bacteriano/análisisRESUMEN
In search for immunological correlates of protection against acute coronavirus disease 2019 (COVID-19) there is a need for high through-put assays for cell-mediated immunity (CMI) to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We established an interferon-γ release assay -based test for detection of CMI against SARS-CoV-2 spike (S) or nucleocapsid (NC) peptides. Blood samples obtained from 549 healthy or convalescent individuals were measured for interferon-γ (IFN-γ) production after peptide stimulation using a certified chemiluminescence immunoassay. Test performance was calculated applying cutoff values with the highest Youden indices in receiver-operating-characteristics curve analysis and compared to a commercially available serologic test. Potential confounders and clinical correlates were assessed for all test systems. 522 samples obtained from 378 convalescent in median 298 days after PCR-confirmed SARS-CoV-2 infection and 144 healthy control individuals were included in the final analysis. CMI testing had a sensitivity and specificity of up to 89% and 74% for S peptides and 89% and 91% for NC peptides, respectively. High white blood cell counts correlated negatively with IFN-γ responses but there was no CMI decay in samples obtained up to one year after recovery. Severe clinical symptoms at time of acute infection were associated with higher measures of adaptive immunity and reported hair loss at time of examination. This laboratory-developed test for CMI to SARS-CoV-2 NC peptides exhibits excellent test performance, is suitable for high through-put routine diagnostics, and should be evaluated for clinical outcome prediction in prospective pathogen re-exposure.