Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Base de datos
Asunto principal
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Clin Chem ; 70(3): 506-515, 2024 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431275

RESUMEN

BACKGROUND: Timely diagnosis is crucial for sepsis treatment. Current machine learning (ML) models suffer from high complexity and limited applicability. We therefore created an ML model using only complete blood count (CBC) diagnostics. METHODS: We collected non-intensive care unit (non-ICU) data from a German tertiary care centre (January 2014 to December 2021). Using patient age, sex, and CBC parameters (haemoglobin, platelets, mean corpuscular volume, white and red blood cells), we trained a boosted random forest, which predicts sepsis with ICU admission. Two external validations were conducted using data from another German tertiary care centre and the Medical Information Mart for Intensive Care IV database (MIMIC-IV). Using the subset of laboratory orders also including procalcitonin (PCT), an analogous model was trained with PCT as an additional feature. RESULTS: After exclusion, 1 381 358 laboratory requests (2016 from sepsis cases) were available. The CBC model shows an area under the receiver operating characteristic (AUROC) of 0.872 (95% CI, 0.857-0.887). External validations show AUROCs of 0.805 (95% CI, 0.787-0.824) for University Medicine Greifswald and 0.845 (95% CI, 0.837-0.852) for MIMIC-IV. The model including PCT revealed a significantly higher AUROC (0.857; 95% CI, 0.836-0.877) than PCT alone (0.790; 95% CI, 0.759-0.821; P < 0.001). CONCLUSIONS: Our results demonstrate that routine CBC results could significantly improve diagnosis of sepsis when combined with ML. The CBC model can facilitate early sepsis prediction in non-ICU patients with high robustness in external validations. Its implementation in clinical decision support systems has strong potential to provide an essential time advantage and increase patient safety.


Asunto(s)
Sepsis , Humanos , Sepsis/diagnóstico , Unidades de Cuidados Intensivos , Aprendizaje Automático , Hospitalización , Polipéptido alfa Relacionado con Calcitonina , Curva ROC , Estudios Retrospectivos , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA