Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(35): 9092-9099, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39197085

RESUMEN

Ultrafast spin manipulation for optical spin-logic applications requires material systems with strong spin-selective light-matter interactions. The optical Stark effect can realize spin-selective light-matter interactions by breaking the degeneracy of spin-selective transitions with an external electric field. Halide perovskites have large exciton binding energies, which enable a room-temperature optical Stark effect. However, halide perovskites are prone to degradation when interacting with light and polar solvents, limiting further integration with nanophotonic structures. We demonstrate a hybrid material system consisting of CsPbBr3 nanocrystal glass weakly coupled to resonant plasmonic silver nanoparticles, showing ultrafast tunable spin-based polarization selectivity at room temperature. We performed circularly polarized pump-probe characterizations to investigate the optical Stark effect in this material system, which resulted in a maximum energy shift of ∼3.67 meV (detuning energy of 0.11 eV and pump intensity of 0.62 GW/cm2). We show that halide perovskite nanocrystal glasses have excellent resistance to heat and moisture, which may be favorable for integration with nanophotonic structures for further engineering polarization states, energy tuning, and coherence time.

2.
J Phys Chem Lett ; 14(1): 267-272, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36595354

RESUMEN

Light-induced phase segregation in mixed halide perovskites is a major roadblock for commercialization of optoelectronics utilizing these materials. We investigate the phenomenon in a model material system consisting of only surfaces and the bulk of a single-crystalline-like microplate. We utilize environmental in-situ time-dependent photoluminescence spectroscopy to observe the bandgap evolution of phase segregation under illumination. This enables analysis of the evolution of the iodide-rich phase composition as a function of the environment (i.e., surface defects) and carrier concentration. Our study provides microscopic insights into the relationship among photocarrier generations, surface structural defects, and subsequently iodide ion migrations that result in the complex evolution of phase segregation. We elucidate the significance of surface defects with respect to the evolution of phase segregation, which may provide new perspectives for modulating ion migration by engineering of defects and carrier concentrations.

3.
J Phys Chem Lett ; 13(33): 7645-7652, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35959945

RESUMEN

All-inorganic halide perovskites are promising candidates for optoelectronic and photovoltaic devices because of their good thermal stability and remarkable optoelectronic properties. Among those properties, carrier transport properties are critical as they inherently dominate the device performance. The transport properties of perovskites have been widely studied at room and lower temperatures, but their high-temperature (i.e., tens of degrees above room temperature) characteristics are not fully understood. Here, the photoexcitation diffusion is optically visualized by transient photoluminescence microscopy (TPLM), through which the temperature-dependent transport characteristics from room temperature to 80 °C are studied in all-inorganic CsPbBr3 single-crystalline microplates. We reveal the decreasing trend of diffusion coefficient and the almost unchanged trend of diffusion length when heating the sample to high temperature. The phonon scattering in combination with the variation of effective mass is proposed for the explanation of the temperature-dependent diffusion behavior.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA