Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
NPJ Precis Oncol ; 8(1): 236, 2024 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-39427038

RESUMEN

Noonan Syndrome (NS) is associated with an increased risk of low-grade central nervous system tumours in children but only very rarely associated with high-grade gliomas. Here we describe the first reported case of a spinal high-grade astrocytoma with piloid features (HGAP) in a child with NS. This case was a diagnostic and treatment dilemma, prior to whole-genome germline and tumour sequencing, tumour transcriptome sequencing and DNA methylation analysis. The methylation profile matched strongly with HGAP and sequencing identified somatic FGFR1 and NF1 variants and a PTPN11 germline pathogenic variant. Therapeutic targets were identified but also alterations novel to HGAP such as differential expression of VEGFA and PD-L1. The germline PTPN11 finding has not been previously described in individuals with HGAP. This case underscores the power of precision medicine from a diagnostic, therapeutic and clinical management perspective, and describes an association between HGAP and NS which has not previously been reported.

2.
Nat Med ; 30(7): 1913-1922, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38844796

RESUMEN

Recent research showed that precision medicine can identify new treatment strategies for patients with childhood cancers. However, it is unclear which patients will benefit most from precision-guided treatment (PGT). Here we report consecutive data from 384 patients with high-risk pediatric cancer (with an expected cure rate of less than 30%) who had at least 18 months of follow-up on the ZERO Childhood Cancer Precision Medicine Program PRecISion Medicine for Children with Cancer (PRISM) trial. A total of 256 (67%) patients received PGT recommendations and 110 (29%) received a recommended treatment. PGT resulted in a 36% objective response rate and improved 2-year progression-free survival compared with standard of care (26% versus 12%; P = 0.049) or targeted agents not guided by molecular findings (26% versus 5.2%; P = 0.003). PGT based on tier 1 evidence, PGT targeting fusions or commenced before disease progression had the greatest clinical benefit. Our data show that PGT informed by comprehensive molecular profiling significantly improves outcomes for children with high-risk cancers. ClinicalTrials.gov registration: NCT03336931.


Asunto(s)
Neoplasias , Medicina de Precisión , Humanos , Medicina de Precisión/métodos , Niño , Neoplasias/genética , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Femenino , Masculino , Adolescente , Preescolar , Lactante , Supervivencia sin Progresión , Resultado del Tratamiento
4.
Cancer Res ; 83(16): 2716-2732, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37523146

RESUMEN

For one-third of patients with pediatric cancer enrolled in precision medicine programs, molecular profiling does not result in a therapeutic recommendation. To identify potential strategies for treating these high-risk pediatric patients, we performed in vitro screening of 125 patient-derived samples against a library of 126 anticancer drugs. Tumor cell expansion did not influence drug responses, and 82% of the screens on expanded tumor cells were completed while the patients were still under clinical care. High-throughput drug screening (HTS) confirmed known associations between activating genomic alterations in NTRK, BRAF, and ALK and responses to matching targeted drugs. The in vitro results were further validated in patient-derived xenograft models in vivo and were consistent with clinical responses in treated patients. In addition, effective combinations could be predicted by correlating sensitivity profiles between drugs. Furthermore, molecular integration with HTS identified biomarkers of sensitivity to WEE1 and MEK inhibition. Incorporating HTS into precision medicine programs is a powerful tool to accelerate the improved identification of effective biomarker-driven therapeutic strategies for treating high-risk pediatric cancers. SIGNIFICANCE: Integrating HTS with molecular profiling is a powerful tool for expanding precision medicine to support drug treatment recommendations and broaden the therapeutic options available to high-risk pediatric cancers.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Niño , Evaluación Preclínica de Medicamentos , Detección Precoz del Cáncer , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ensayos Analíticos de Alto Rendimiento/métodos
5.
BMJ Open ; 13(5): e070082, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37253493

RESUMEN

INTRODUCTION: Identifying an underlying germline cancer predisposition (CP) in a child with cancer has potentially significant implications for both the child and biological relatives. Cohort studies indicate that 10%-15% of paediatric cancer patients carry germline pathogenic or likely pathogenic variants in cancer predisposition genes, but many of these patients do not meet current clinical criteria for genetic testing. This suggests broad tumour agnostic germline testing may benefit paediatric cancer patients. However, the utility and psychosocial impact of this approach remain unknown. We hypothesise that an approach involving trio whole-genome germline sequencing (trio WGS) will identify children and families with an underlying CP in a timely fashion, that the trio design will streamline cancer risk counselling to at-risk relatives if CP was inherited, and that trio testing will not have a negative psychosocial impact on families. METHOD AND ANALYSIS: To test this, we present the Cancer PREDisposition In Childhood by Trio sequencing study (PREDICT). This study will assess the clinical utility of trio WGS to identify CP in unselected patients with cancer 21 years or younger in New South Wales, Australia. PREDICT will perform analysis of biological parents to determine heritability and will examine the psychosocial impact of this trio sequencing approach. PREDICT also includes a broad genomics research programme to identify new candidate genes associated with childhood cancer risk. ETHICS AND DISSEMINATION: By evaluating the feasibility, utility and psychosocial impact of trio WGS to identify CP in paediatric cancer, PREDICT will inform how such comprehensive testing can be incorporated into a standard of care at diagnosis for all childhood cancer patients. TRIAL REGISTRATION NUMBER: NCT04903782.


Asunto(s)
Neoplasias , Adolescente , Niño , Humanos , Estudios de Cohortes , Susceptibilidad a Enfermedades , Predisposición Genética a la Enfermedad , Neoplasias/diagnóstico , Neoplasias/genética , Estudios Prospectivos , Secuenciación Completa del Genoma/métodos
6.
Front Oncol ; 13: 1123492, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937401

RESUMEN

Introduction: Ependymomas (EPN) are the third most common malignant brain cancer in children. Treatment strategies for pediatric EPN have remained unchanged over recent decades, with 10-year survival rates stagnating at just 67% for children aged 0-14 years. Moreover, a proportion of patients who survive treatment often suffer long-term neurological side effects as a result of therapy. It is evident that there is a need for safer, more effective treatments for pediatric EPN patients. There are ten distinct subgroups of EPN, each with their own molecular and prognostic features. To identify and facilitate the testing of new treatments for EPN, in vivo laboratory models representative of the diverse molecular subtypes are required. Here, we describe the establishment of a patient-derived orthotopic xenograft (PDOX) model of posterior fossa A (PFA) EPN, derived from a metastatic cranial lesion. Methods: Patient and PDOX tumors were analyzed using immunohistochemistry, DNA methylation profiling, whole genome sequencing (WGS) and RNA sequencing. Results: Both patient and PDOX tumors classified as PFA EPN by methylation profiling, and shared similar histological features consistent with this molecular subgroup. RNA sequencing revealed that gene expression patterns were maintained across the primary and metastatic tumors, as well as the PDOX. Copy number profiling revealed gains of chromosomes 7, 8 and 19, and loss of chromosomes 2q and 6q in the PDOX and matched patient tumor. No clinically significant single nucleotide variants were identified, consistent with the low mutation rates observed in PFA EPN. Overexpression of EZHIP RNA and protein, a common feature of PFA EPN, was also observed. Despite the aggressive nature of the tumor in the patient, this PDOX was unable to be maintained past two passages in vivo. Discussion: Others who have successfully developed PDOX models report some of the lowest success rates for EPN compared to other pediatric brain cancer types attempted, with loss of tumorigenicity not uncommon, highlighting the challenges of propagating these tumors in the laboratory. Here, we discuss our collective experiences with PFA EPN PDOX model generation and propose potential approaches to improve future success in establishing preclinical EPN models.

7.
Sci Rep ; 13(1): 3775, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36882456

RESUMEN

Diffuse midline gliomas (DMG) harbouring H3K27M mutation are paediatric tumours with a dismal outcome. Recently, a new subtype of midline gliomas has been described with similar features to DMG, including loss of H3K27 trimethylation, but lacking the canonical H3K27M mutation (H3-WT). Here, we report a cohort of five H3-WT tumours profiled by whole-genome sequencing, RNA sequencing and DNA methylation profiling and combine their analysis with previously published cases. We show that these tumours have recurrent and mutually exclusive mutations in either ACVR1 or EGFR and are characterised by high expression of EZHIP associated to its promoter hypomethylation. Affected patients share a similar poor prognosis as patients with H3K27M DMG. Global molecular analysis of H3-WT and H3K27M DMG reveal distinct transcriptome and methylome profiles including differential methylation of homeobox genes involved in development and cellular differentiation. Patients have distinct clinical features, with a trend demonstrating ACVR1 mutations occurring in H3-WT tumours at an older age. This in-depth exploration of H3-WT tumours further characterises this novel DMG, H3K27-altered sub-group, characterised by a specific immunohistochemistry profile with H3K27me3 loss, wild-type H3K27M and positive EZHIP. It also gives new insights into the possible mechanism and pathway regulation in these tumours, potentially opening new therapeutic avenues for these tumours which have no known effective treatment. This study has been retrospectively registered on clinicaltrial.gov on 8 November 2017 under the registration number NCT03336931 ( https://clinicaltrials.gov/ct2/show/NCT03336931 ).


Asunto(s)
Genes Homeobox , Glioma , Niño , Humanos , Histonas/genética , Metilación , Glioma/genética , Mutación , Receptores ErbB/genética , Receptores de Activinas Tipo I
8.
Acta Neuropathol Commun ; 9(1): 147, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34493325

RESUMEN

Diffuse leptomeningeal glioneuronal tumours (DLGNT) represent rare enigmatic CNS tumours of childhood. Most patients with this disease share common radiological and histopathological features but the clinical course of this disease is variable. A radiological hallmark of this disease is widespread leptomeningeal enhancement that may involve the entire neuroaxis with predilection for the posterior fossa and spine. The classic pathologic features include low- to moderate-density cellular lesions with OLIG2 expression and evidence of 'oligodendroglioma-like' appearance. The MAPK/ERK signaling pathway has recently been reported as a potential driver of tumourigenesis in up to 80% of DLGNT with KIAA1549:BRAF fusions being the most common event seen. Until now, limited analysis of the biological drivers of tumourigenesis has been undertaken via targeted profiling, chromosomal analysis and immunohistochemistry. Our study represents the first examples of comprehensive genomic sequencing in DLGNT and shows that it is not only feasible but crucial to our understanding of this rare disease. Moreover, we demonstrate that DLGNT may be more genomically complex than single-event MAPK/ERK signaling pathway tumours.


Asunto(s)
Neoplasias Encefálicas/genética , Genómica/métodos , Neoplasias Meníngeas/genética , Meningioma/genética , Neoplasias de la Médula Espinal/genética , Adolescente , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/tratamiento farmacológico , Niño , Femenino , Humanos , Masculino , Neoplasias Meníngeas/diagnóstico , Neoplasias Meníngeas/tratamiento farmacológico , Meningioma/diagnóstico , Meningioma/tratamiento farmacológico , Neoplasias de la Médula Espinal/diagnóstico , Neoplasias de la Médula Espinal/tratamiento farmacológico
9.
Cancers (Basel) ; 12(10)2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33053751

RESUMEN

Radiation-induced glioma (RIG) is a highly aggressive brain cancer arising as a consequence of radiation therapy. We report a case of RIG that arose in the brain stem following treatment for paediatric medulloblastoma, and the development and characterisation of a matched orthotopic patient-derived xenograft (PDX) model (TK-RIG915). Patient and PDX tumours were analysed using DNA methylation profiling, whole genome sequencing (WGS) and RNA sequencing. While initially thought to be a diffuse intrinsic pontine glioma (DIPG) based on disease location, results from methylation profiling and WGS were not consistent with this diagnosis. Furthermore, clustering analyses based on RNA expression suggested the tumours were distinct from primary DIPG. Additional gene expression analysis demonstrated concordance with a published RIG expression profile. Multiple genetic alterations that enhance PI3K/AKT and Ras/Raf/MEK/ERK signalling were discovered in TK-RIG915 including an activating mutation in PIK3CA, upregulation of PDGFRA and AKT2, inactivating mutations in NF1, and a gain-of-function mutation in PTPN11. Additionally, deletion of CDKN2A/B, increased IDH1 expression, and decreased ARID1A expression were observed. Detection of phosphorylated S6, 4EBP1 and ERK via immunohistochemistry confirmed PI3K pathway and ERK activation. Here, we report one of the first PDX models for RIG, which recapitulates the patient disease and is molecularly distinct from primary brain stem glioma. Genetic interrogation of this model has enabled the identification of potential therapeutic vulnerabilities in this currently incurable disease.

10.
Mol Cell Biol ; 39(18)2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31235478

RESUMEN

The regulation of tumor suppressor genes by microRNAs (miRNAs) is often demonstrated as a one-miRNA-to-one-target relationship. However, given the large number of miRNA sites within a 3' untranslated region (UTR), most targets likely undergo miRNA cooperation or combinatorial action. Programmed cell death 4 (PDCD4), an important tumor suppressor, prevents neoplastic events and is commonly downregulated in cancer. This study investigates the relationship between miRNA 21 (miR-21) and miR-499 in regulating PDCD4. This was explored using miRNA overexpression, mutational analysis of the PDCD4 3' UTR to assess regulation at each miRNA site, and 50% inhibitory concentration (IC50) calculations for combinatorial behavior. We demonstrate that the first miR-499 binding site within PDCD4 is inactive, but the two remaining sites are both required for PDCD4 suppression. Additionally, the binding of miR-21 to PDCD4 influenced miR-499 activity through an increase in its silencing potency and stabilization of its mature form. Furthermore, adjoining miRNA sites more than 35 nucleotides (nt) apart could potentially regulate thousands of 3' UTRs, similar to that observed between miR-21 and miR-499. The regulation of PDCD4 serves as a unique example of regulatory action by multiple miRNAs. This relationship was predicted to occur on thousands of targets and may represent a wider mode of miRNA regulation.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Neoplasias de Cabeza y Cuello/genética , MicroARNs/genética , Proteínas de Unión al ARN/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Regiones no Traducidas 3' , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/metabolismo , Sitios de Unión , Línea Celular Tumoral , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células HeLa , Neoplasias de Cabeza y Cuello/metabolismo , Humanos , Mutación , Unión Proteica , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo
11.
J Vis Exp ; (88): e51443, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24998448

RESUMEN

The analysis of RNA and its expression is a common feature in many laboratories. Of significance is the emergence of small RNAs like microRNAs, which are found in mammalian cells. These small RNAs are potent gene regulators controlling vital pathways such as growth, development and death and much interest has been directed at their expression in bodily fluids. This is due to their dysregulation in human diseases such as cancer and their potential application as serum biomarkers. However, the analysis of miRNA expression in serum may be problematic. In most cases the amount of serum is limiting and serum contains low amounts of total RNA, of which small RNAs only constitute 0.4-0.5%. Thus the isolation of sufficient amounts of quality RNA from serum is a major challenge to researchers today. In this technical paper, we demonstrate a method which uses only 400 µl of human serum to obtain sufficient RNA for either DNA arrays or qPCR analysis. The advantages of this method are its simplicity and ability to yield high quality RNA. It requires no specialized columns for purification of small RNAs and utilizes general reagents and hardware found in common laboratories. Our method utilizes a Phase Lock Gel to eliminate phenol contamination while at the same time yielding high quality RNA. We also introduce an additional step to further remove all contaminants during the isolation step. This protocol is very effective in isolating yields of total RNA of up to 100 ng/µl from serum but can also be adapted for other biological tissues.


Asunto(s)
Análisis Químico de la Sangre/métodos , ARN no Traducido/sangre , ARN no Traducido/aislamiento & purificación , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA