RESUMEN
This paper reports on a study investigating the viability and senescence of plum ovules when exposed to different constant temperatures over two years. The research was conducted on the primary and secondary ovules of four plum cultivars: 'Mallard', 'Edda', 'Jubileum', and 'Reeves'. The results show that the first indication of ovule viability loss was callose accumulation, which was detected using the fluorescent dye aniline blue. All cultivars had viable ovules, in different percentages, at 8 °C on the twelfth day after anthesis. However, at higher temperatures, distinct patterns emerged, indicating the adaptability of each cultivar at certain temperatures. The first indication of callose accumulation became visible at the chalazal pole. After anthesis, the ovule's ability to remain viable gradually reduced, followed by callose deposition throughout the ovary. The cultivars 'Edda' and 'Reeves', from 6 days after anthesis onward, in both years, showed the highest percentage of nonviable ovules. In contrast, the 'Jubileum' cultivar demonstrated the highest percentage of viable ovules. The loss of viability of secondary ovules followed a similar pattern to that of the primary ovules in all cultivars. This research provides valuable insights into embryological processes, which can help in the following breeding programs, and to cultivate plum cultivars in Western Norway's climate conditions.
RESUMEN
Viticulture is of great economic importance in the southern part of Bosnia and Herzegovina, thanks to favorable climatic conditions and a long-standing tradition of growing vines. The assortment is dominated by international varieties, as well as some autochthonous and domesticated varieties. The subject of the research is the analysis of the quality of Cabernet Sauvignon, Merlot, Vranac, and Blatina varieties at two localities in Herzegovina during the period 2020-2021. The paper examined the most important economic and technological characteristics, grape quality, and berry phenolic profile. A particularly pronounced variation of the tested characteristics during the research period was observed in the Merlot and Blatina varieties, while the Cabernet Sauvignon and Vranac varieties showed a slightly higher stability of the tested characteristics. Poorer grape quality during the research period was registered with the Blatina variety, which can be considered a varietal characteristic to some extent. The analyzed grape varieties were rich in polyphenols, and the impact of grape variety on the berry phenolic profiles was confirmed. The most abundant polyphenols in the analyzed grape samples were quercetin 3-O-glucoside and catechin gallate, followed by kaempferol 3-O-glucoside. The highest values of polyphenols were found mainly in the samples originating from Trebinje. Indigenous Balkan grape varieties (Vranac and Blatina) stood out with particularly high contents of some phenolics. Research has shown that climatic conditions have a significant influence on the most important characteristics of grapes, which are conditioned by genotypic specificities. The conditions for growing vines in the conditions of Herzegovina enable high quality in the production of grapes, especially the Cabernet Sauvignon and Vranac varieties. The autochthonous variety Blatina shows significant variations in grape quality during the test period, which was confirmed by the results of a larger number of studies in the previous period.
RESUMEN
Compatibility and synchrony between specialized tissues of the pistil, female gametophytes and male gametophytes, are necessary for successful pollination, fertilization, and fruit set in angiosperms. The aim of the present work was to study the development and viability of embryo sacs, as well as fertilization success, in relation to the fruit set of the cultivars 'Mallard', 'Edda', 'Jubileum', and 'Reeves', under specific Norwegian climatic conditions. Emasculated, unpollinated, and open-pollinated flowers were collected at the beginning of flowering, and on the 3rd, 6th, 9th, and 12th days after flowering, from all four plum cultivars over two years (2018/2019). Ovaries were dehydrated, embedded in paraffin wax, sectioned, stained, and observed under a light microscope. Results showed the existence of synchronization between successive phases in the development of the embryo sac and individual phases of flowering. All plum cultivars had higher percentages of viable embryo sacs, fertilized embryo sacs, and fruit set in 2018 than in 2019. These differences may be related to the very low temperatures during the post-full-flowering period in 2019, and to the low adaptation of some studied cultivars to unfavorable conditions. In our study, the cultivar 'Jubileum' showed the highest percentage of viable embryo sacs, fertilized embryo sacs, and fruit set compared to other cultivars, i.e., the best low-temperature adaptation.
RESUMEN
Apple production generates large amounts of apple pomace including seeds, leading to high transportation costs, public health hazards and undesirable odor. A new reuse strategy of this kind of waste could solve environmental issues and/or create unconventional sources of health beneficial products. In total, seeds from 75 apple cultivars grown in Norway (both domestic and international) have been analyzed for the first time for oil content and fatty acid profile together with tocopherols and carotenoids quantification in defatted seeds. Seeds from cultivar Håkonseple had the highest oil content (22.10%), with linoleic, oleic acid, and palmitic acid as the most abundant fatty acids. The levels of ß-carotene and lycopene carotenoids and α-tocopherol were the highest in defatted seeds of the cultivar Sureple Grøn. Principal component analysis separated cultivars according to the total oil content. The Norwegian apple cultivars Håkonseple, Kviteple, Tolleivseple, Vinterrosenstrips, and Tokheimseple are recommended for obtaining vegetable oil due to their high oil contents, while cultivar Sureple Grøn can be separated due to its high levels of ß-carotene, lycopene and total tocopherols.
RESUMEN
This study was conducted with the aim of developing fruit spirits by utilizing old (autochthonous) apple and pear cultivars that can be attractive to both consumers and producers. Consumers of spirits could enjoy the unique flavor, and producers could gain an opportunity for brand development. In total, eight old apple cultivars (Sarija, Zuja, Samoniklica, Prijedorska zelenika, Bobovec, Masnjaca, Lijepocvjetka, and Sarenika) and three pear cultivars (Budaljaca, Krakaca, and Kalicanka) from Bosnia and Herzegovina were used for the spirits production and for characterizing the flavor of distillates. Golden Delicious was used as a representative of commercial apple cultivar. The aroma profile was conducted through the identification of minor volatile organic compounds (VOCs) and the sensory perception of spirits. Analysis of the VOCs was performed by gas chromatography mass spectroscopy (GC/MS) techniques after enrichment via solid-phase microextraction (SPME). Sensory evaluation was performed by 12 trained panelists. Overall, 35 minor volatile compounds were found in spirits: 13 esters, 7 alcohols, 6 acids, 5 terpenes, and 4 aldehydes. Significant differences were detected in the distribution and quantity of the VOCs, which were fruit cultivar-dependent. Spirits made from Sarenika apple cultivar showed the largest amount of all acids, especially short- and medium-chain fatty acids; however, this richness was not correlated with pleasant sensory attributes. Spirits obtained from Prijedorska zelenika and Masnjaca apple cultivars had the best sensory attributes. Budeljaca and Krakaca pears are promising cultivars as flavoring in spirits production.
RESUMEN
The objective of this study was to determine and compare the sugar profile, distribution in fruits and leaves and sink-source relationship in three strawberry ('Favette', 'Alba' and 'Clery') and three blueberry cultivars ('Bluecrop', 'Duke' and 'Nui') grown in organic (OP) and integrated production systems (IP). Sugar analysis was done using high-performance anion-exchange chromatography (HPAEC) with pulsed amperometric detection (PAD). The results showed that monosaccharide glucose and fructose and disaccharide sucrose were the most important sugars in strawberry, while monosaccharide glucose, fructose, and galactose were the most important in blueberry. Source-sink relationship was different in strawberry compared to blueberry, having a much higher quantity of sugars in its fruits in relation to leaves. According to principal component analysis (PCA), galactose, arabinose, and melibiose were the most important sugars in separating the fruits of strawberries from blueberries, while panose, ribose, stachyose, galactose, maltose, rhamnose, and raffinose were the most important sugar component in leaves recognition. Galactitol, melibiose, and gentiobiose were the key sugars that split out strawberry fruits and leaves, while galactose, maltotriose, raffinose, fructose, and glucose divided blueberry fruits and leaves in two groups. PCA was difficult to distinguish between OP and IP, because the stress-specific responses of the studied plants were highly variable due to the different sensitivity levels and defense strategies of each cultivar, which directly affected the sugar distribution. Due to its high content of sugars, especially fructose, the strawberry cultivar 'Clery' and the blueberry cultivars 'Bluecrop' and 'Nui' could be singled out in this study as being the most suitable cultivars for OP.
RESUMEN
The contemporary reclamation method in an opencast coal mine closure comprises the use of the preserved surface soil layer (SSL) before mining, and can be directly returned to the areas being rehabilitated. The present study emphasizes a risk in the use of such a SSL in mine rehabilitation due to the possible excessive amount of heavy metals which usually derives from a metal-rich sediment or fluvial character of overburden material. This indication was approved by the bioassessment of cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn) in root and aerial parts of maize (Zea mays), alfalfa (Medicago sativa), sweet clover (Melilotus officinalis), wheat (Triticum aestivum), barley (Hordeum sativum), white clover (Trifolium repens), pasture (Poales sp.), tomato (Solanum lycopersicum), potato (Solanum tuberosum) and carrot (Daucus carota) grown on SSL in the opencast mine area. The fluvial layers of the investigated mine SSL revealed the excessive existence of Ni and Cr, probably of geogenic origin, according to the X-ray diffraction (XRD) which detected Ni- and Cr-bearing minerals in soil fractions. In addition, the highest residual fraction of these two heavy metals, obtained by sequential extraction analyses, together with all other tested soil parameters, supported this assumption. Nevertheless, the accumulations of Cr in tomato fruit (2.93 mg kg-1), potato tuber (5.89 mg kg-1) and carrot root (7.35 mg kg-1) grown on the investigated SSL were found to exceed a critical level of this element for human nutrition. However, despite the evident excess of Ni in the investigated SSL, a similar trend was not found in edible part of plants. The transfer and mobility of the investigated metals was evaluated using the accumulation factor (AF < 1.0) where the root were the preferential organ for the storage of heavy metals. This investigation could bring an important input for its acceptability of use in soil restoration after mining for food/fodder production, or it could indicate the potential risks of the presence of heavy metals regarding its possible use in improving the human surrounding.
Asunto(s)
Contaminación Ambiental/análisis , Metales Pesados/análisis , Metales Pesados/farmacocinética , Contaminantes del Suelo/análisis , Contaminantes del Suelo/farmacocinética , Daucus carota/química , Daucus carota/metabolismo , Restauración y Remediación Ambiental , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Medicago sativa/química , Medicago sativa/metabolismo , Minería , Componentes Aéreos de las Plantas/química , Componentes Aéreos de las Plantas/metabolismo , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Serbia , Solanum tuberosum/química , Solanum tuberosum/metabolismo , Trifolium/química , Trifolium/metabolismo , Triticum/química , Triticum/metabolismo , Difracción de Rayos X , Zea mays/química , Zea mays/metabolismoRESUMEN
Large amounts of fruit seeds, especially peach, are discarded annually in juice or conserve producing industries which is a potential waste of valuable resource and serious disposal problem. Regarding the fact that peach seeds can be obtained as a byproduct from processing companies their exploitation should be greater and, consequently more information of cultivars' kernels and their composition is required. A total of 25 samples of kernels from various peach germplasm (including commercial cultivars, perspective hybrids and vineyard peach accessions) differing in origin and ripening time were characterized by evaluation of their sugar composition. Twenty characteristic carbohydrates and sugar alcohols were determined and quantified using high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC/PAD). Sucrose, glucose and fructose are the most important sugars in peach kernels similar to other representatives of the Rosaceae family. Also, high amounts of sugars in seeds of promising hybrids implies that through conventional breeding programs peach kernels with high sugar content can be obtained. In addition, by the means of several pattern recognition methods the variables that discriminate peach kernels arising from diverse germplasm and different stage of maturity were identified and successful models for further prediction were developed. Sugars such as ribose, trehalose, arabinose, galactitol, fructose, maltose, sorbitol, sucrose, iso-maltotriose were marked as most important for such discrimination.
Asunto(s)
Carbohidratos/análisis , Prunus persica , Semillas/química , Cromatografía Líquida de Alta Presión , Manipulación de Alimentos , Fructosa/análisis , Frutas/química , Glucosa/análisis , Prunus persica/química , Prunus persica/clasificación , Prunus persica/crecimiento & desarrollo , Sacarosa/análisis , Edulcorantes , ResiduosRESUMEN
Environmental problems of non-rehabilitated overburden material are present in surrounding of open coal mines worldwide. Ecological restoration of this soil material usually deals with the improvement of its bad physico-chemical properties and its poor nutrient status, sometimes associated with heavy metal problems. Applied overburden restoration by planting orchard (1990) is assumed to be the first of its kind at opencast mines globally, so that present work was aimed at acquiring information about its efficiency of the applied measures concerning their possible use in agriculture. Various physical and chemical properties, together with the pseudo total and DTPA extractable metals (Fe, Mn, Cu, Zn, Co, Ni, Pb, Cr, Cd) as well as sequential Ni extraction analyses, was measured, in order to evaluate the impact of soil's Ni level (76.3-111.7 mg kg⻹) on decreasing yields of apples, pears and plums. As a general pattern, reclaimed soil was significantly enriched with organic matter (>2.5 percent) and nutrients compared to the initial (2 m depth) and non-reclaimed adjacent soil, approving this method for overburden restoration. Despite low Ni concentration in organs, Ni accumulation in a fruits' trees qualified these species as suitable for phytostabilization of present heavy metals, with a woody biomass as a large and important sink for Ni, especially in the roots. Applied cytogenetic studies evaluate the lack of genotoxic effect of nickel (Ni) on the gametic cells of investigated species, having no significant effect on meiosis and pollen germination. Most of the found anomalies were in apples, as a kind of aberrations with sticky figures and chromosome lagging, should be ascribed to the environmental and genetic interaction over the aging of trees.