Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 19(6): e0302687, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38848398

RESUMEN

Xenogenesis has been recognized as a prospective method for producing channel catfish, Ictalurus punctatus ♀ × blue catfish, I. furcatus ♂ hybrids. The xenogenesis procedure can be achieved by transplanting undifferentiated stem cells derived from a donor fish into a sterile recipient. Xenogenesis for hybrid catfish embryo production has been accomplished using triploid channel catfish as a surrogate. However, having a surrogate species with a shorter maturation period, like white catfish (Ameiurus catus), would result in reduced feed costs, labor costs, and smaller body size requirements, making it a more suitable species for commercial applications where space is limited, and as a model species. Hence, the present study was conducted to assess the effectiveness of triploid white catfish as a surrogate species to transplant blue catfish stem cells (BSCs) and channel catfish stem cells (CSCs). Triploid white catfish fry were injected with either BSCs or CSCs labeled with PKH 26 fluorescence dye from 0 to 12 days post hatch (DPH). No significant differences in weight and length of fry were detected among BSCs and CSCs injection times (0 to 12 DPH) when fry were sampled at 45 and 90 DPH (P > 0.05). The highest survival was reported when fry were injected between 4.0 to 5.5 DPH (≥ 81.2%). At 45 and 90 DPH, cell and cluster area increased for recipients injected from 0 to 5.2 DPH, and the highest cluster area values were reported between 4.0 to 5.2 DPH. Thereafter, fluorescent cell and cluster area in the host declined with no further decrease after 10 DPH. At 45 DPH, the highest percentage of xenogens were detected when fry were injected with BSCs between 4.0 to 5.0 and CSCs between 3.0 to 5.0 DPH. At 90 DPH, the highest number of xenogens were detected from 4.0 to 6.0 DPH when injected with either BSCs or CSCs. The current study demonstrated the suitability of white catfish as a surrogate species when BSCs and CSCs were transplanted into triploid white catfish between 4.0 to 6.0 DPH (27.4 ± 0.4°C). Overall, these findings allow enhanced efficiency of commercializing xenogenic catfish carrying gametes of either blue catfish or channel catfish.


Asunto(s)
Acuicultura , Bagres , Triploidía , Animales , Acuicultura/métodos , Células Madre/citología , Células Madre/metabolismo , Trasplante de Células Madre/métodos , Ictaluridae/genética , Femenino , Masculino
2.
Genetics ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809057

RESUMEN

In F1 hybrids, phenotypic values are expected to be near the parental means under additive effects or close to one parent under dominance. However, F1 traits can fall outside the parental range, and outbreeding depression occurs when inferior fitness is observed in hybrids. Another possible outcome is heterosis, a phenomenon that interspecific hybrids or intraspecific crossbred F1s exhibit improved fitness compared to both parental species or strains. As an application of heterosis, hybrids between channel catfish females and blue catfish males are superior in feed conversion efficiency, carcass yield, and harvestability. Over twenty years of hybrid catfish production in experimental settings and farming practices generated abundant phenotypic data, making it an ideal system to investigate heterosis. In this study, we characterized fitness in terms of growth and survival longitudinally, revealing environment-dependent heterosis. In ponds, hybrids outgrow both parents due to an extra rapid growth phase of 2∼4 months in year 2. This bimodal growth pattern is unique to F1 hybrids in pond culture environments only. In sharp contrast, the same genetic types cultured in tanks display outbreeding depression, where hybrids perform poorly, while channel catfish demonstrate superiority in growth throughout development. Our findings represent the first example, known to the authors, of opposite fitness shifts in response to environmental changes in interspecific vertebrate hybrids, suggesting a broader fitness landscape for F1 hybrids. Future genomic studies based on this experiment will help understand genome-environment interaction in shaping the F1 progeny fitness in the scenario of environment-dependent heterosis and outbreeding depression.

3.
Int J Biol Macromol ; 260(Pt 1): 129384, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38224812

RESUMEN

CRISPR/Cas9-mediated multiplex genome editing (MGE) conventionally uses multiple single-guide RNAs (sgRNAs) for gene-targeted mutagenesis via the non-homologous end joining (NHEJ) pathway. MGE has been proven to be highly efficient for functional gene disruption/knockout (KO) at multiple loci in mammalian cells or organisms. However, in the absence of a DNA donor, this approach is limited to small indels without transgene integration. Here, we establish the linear double-stranded DNA (dsDNA) and double-cut plasmid (dcPlasmid) combination-assisted MGE in channel catfish (Ictalurus punctatus), allowing combinational deletion mutagenesis and transgene knock-in (KI) at multiple sites through NHEJ/homology-directed repair (HDR) pathway in parallel. In this study, we used single-sgRNA-based genome editing (ssGE) and multi-sgRNA-based MGE (msMGE) to replace the luteinizing hormone (lh) and melanocortin-4 receptor (mc4r) genes with the cathelicidin (As-Cath) transgene and the myostatin (two target sites: mstn1, mstn2) gene with the cecropin (Cec) transgene, respectively. A total of 9000 embryos were microinjected from three families, and 1004 live fingerlings were generated and analyzed. There was no significant difference in hatchability (all P > 0.05) and fry survival (all P > 0.05) between ssGE and msMGE. Compared to ssGE, CRISPR/Cas9-mediated msMGE assisted by the mixture of dsDNA and dcPlasmid donors yielded a higher knock-in (KI) efficiency of As-Cath (19.93 %, [59/296] vs. 12.96 %, [45/347]; P = 0.018) and Cec (22.97 %, [68/296] vs. 10.80 %, [39/361]; P = 0.003) transgenes, respectively. The msMGE strategy can be used to generate transgenic fish carrying two transgenes at multiple loci. In addition, double and quadruple mutant individuals can be produced with high efficiency (36.3 % âˆ¼ 71.1 %) in one-step microinjection. In conclusion, we demonstrated that the CRISPR/Cas9-mediated msMGE allows the one-step generation of simultaneous insertion of the As-Cath and Cec transgenes at four sites, and the simultaneous disruption of the lh, mc4r, mstn1 and mstn2 alleles. This msMGE system, aided by the mixture donors, promises to pioneer a new dimension in the drive and selection of multiple designated traits in other non-model organisms.


Asunto(s)
Bagres , ARN Guía de Sistemas CRISPR-Cas , Humanos , Animales , Sistemas CRISPR-Cas/genética , Bagres/genética , Edición Génica/métodos , Transgenes/genética , Mamíferos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA