Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Adv ; 8(24): eabl8070, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35704569

RESUMEN

Eggs contain about 200,000 mitochondria that generate adenosine triphosphate and metabolites essential for oocyte development. Mitochondria also integrate metabolism and transcription via metabolites that regulate epigenetic modifiers, but there is no direct evidence linking oocyte mitochondrial function to the maternal epigenome and subsequent embryo development. Here, we have disrupted oocyte mitochondrial function via deletion of the mitochondrial fission factor Drp1. Fission-deficient oocytes exhibit a high frequency of failure in peri- and postimplantation development. This is associated with altered mitochondrial function, changes in the oocyte transcriptome and proteome, altered subcortical maternal complex, and a decrease in oocyte DNA methylation and H3K27me3. Transplanting pronuclei of fertilized Drp1 knockout oocytes to normal ooplasm fails to rescue embryonic lethality. We conclude that mitochondrial function plays a role in establishing the maternal epigenome, with serious consequences for embryo development.


Asunto(s)
Desarrollo Embrionario , Oocitos , Citoplasma/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Desarrollo Embrionario/genética , Femenino , Humanos , Mitocondrias/metabolismo , Oocitos/metabolismo , Embarazo
2.
Mol Hum Reprod ; 27(11)2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34590701

RESUMEN

PIWI-interacting small RNAs (piRNAs) maintain genome stability in animal germ cells, with a predominant role in silencing transposable elements. Mutations in the piRNA pathway in the mouse uniformly lead to failed spermatogenesis and male sterility. By contrast, mutant females are fertile. In keeping with this paradigm, we previously reported male sterility and female fertility associated with loss of the enzyme HENMT1, which is responsible for stabilising piRNAs through the catalysation of 3'-terminal 2'-O-methylation. However, the Henmt1 mutant females were poor breeders, suggesting they could be subfertile. Therefore, we investigated oogenesis and female fertility in these mice in greater detail. Here, we show that mutant females indeed have a 3- to 4-fold reduction in follicle number and reduced litter sizes. In addition, meiosis-II mutant oocytes display various spindle abnormalities and have a dramatically altered transcriptome which includes a down-regulation of transcripts required for microtubule function. This down-regulation could explain the spindle defects observed with consequent reductions in litter size. We suggest these various effects on oogenesis could be exacerbated by asynapsis, an apparently universal feature of piRNA mutants of both sexes. Our findings reveal that loss of the piRNA pathway in females has significant functional consequences.


Asunto(s)
Fertilidad , Infertilidad Femenina/enzimología , Meiosis , Metiltransferasas/metabolismo , Oocitos/enzimología , Oogénesis , ARN Interferente Pequeño/metabolismo , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Infertilidad Femenina/genética , Infertilidad Femenina/fisiopatología , Metiltransferasas/genética , Ratones , ARN Interferente Pequeño/genética , Transcriptoma
3.
Hum Reprod ; 36(3): 771-784, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33367783

RESUMEN

STUDY QUESTION: Do mitochondria-targeted therapies reverse ageing- and oxidative stress-induced spindle defects in oocytes from mice and humans? SUMMARY ANSWER: Exposure to MitoQ or BGP-15 during IVM protected against spindle and chromosomal defects in mouse oocytes exposed to oxidative stress or derived from reproductively aged mice whilst MitoQ promoted nuclear maturation and protected against chromosomal misalignments in human oocytes. WHAT IS KNOWN ALREADY: Spindle and chromosomal abnormalities in oocytes are more prevalent with maternal aging, increasing the risk of aneuploidy, miscarriage and genetic disorders such as Down's syndrome. The origin of compromised oocyte function may be founded in mitochondrial dysfunction and increased reactive oxygen species (ROS). STUDY DESIGN, SIZE, DURATION: Oocytes from young and old mice were treated with MitoQ and/or BGP-15 during IVM. To directly induce mitochondrial dysfunction, oocytes were treated with H2O2, and then treated the MitoQ and/or BGP-15. Immature human oocytes were cultured with or without MitoQ. Each experiment was repeated at least three times, and data were analyzed by unpaired-sample t-test or chi-square test. PARTICIPANTS/MATERIALS, SETTING, METHODS: Immature germinal vesicle (GV) stage oocytes from 1-, 12- and 18-month-old mice were obtained from preovulatory ovarian follicles. Oocytes were treated with MitoQ and/or BGP-15 during IVM. GV-stage human oocytes were cultured with or without MitoQ. Mitochondrial membrane potential and mitochondrial ROS were measured by live-cell imaging. Meiotic spindle and chromosome alignments were visualized by immunofluorescent labeling of fixed oocytes and the 3-dimensional images were analyzed by Imaris. MAIN RESULTS AND THE ROLE OF CHANCE: MitoQ or BGP-15 during IVM protects against spindle and chromosomal defects in oocytes exposed to oxidative stress and in oocytes from aged mice (P < 0.001). In human oocytes, the presence of MitoQ during IVM promoted nuclear maturation and had a similar positive effect in protecting against chromosomal misalignments (P < 0.001). LIMITATIONS, REASONS FOR CAUTION: Our study identifies two excellent candidates that may help to improve fertility in older women. However, these potential therapies must be tested for efficacy in clinical IVM systems, and undergo thorough examination of resultant offspring in preclinical models before utilization. WIDER IMPLICATIONS OF THE FINDINGS: Our results using in-vitro systems for oocyte maturation in both mouse and human provide proof of principle that mitochondrially targeted molecules such as MitoQ and BGP-15 may represent a novel therapeutic approach against maternal aging-related spindle and chromosomal abnormalities. STUDY FUNDING/COMPETING INTEREST(S): The project was financially supported by the National Health and Medical Research Council and Australian Research Council, Australia. U.A.-Z. was supported by the Iraqi Higher Education and Scientific Research Ministry PhD scholarship and O.C. was supported by TUBITAK-1059B191601275. M.P.M. consults for MitoQ Inc. and holds patents in mitochondria-targeted therapies. R.L.R. is an inventor on patents relating to the use of BGP-15 to improve gamete quality. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Peróxido de Hidrógeno , Oocitos , Anciano , Animales , Australia , Humanos , Peróxido de Hidrógeno/metabolismo , Técnicas de Maduración In Vitro de los Oocitos , Ratones , Mitocondrias , Oocitos/metabolismo , Oximas , Piperidinas , Huso Acromático
4.
Mol Hum Reprod ; 25(11): 695-705, 2019 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-31579926

RESUMEN

Mitochondria are highly dynamic organelles and their distribution, structure and activity affect a wide range of cellular functions. Mitochondrial membrane potential (∆Ψm) is an indicator of mitochondrial activity and plays a major role in ATP production, redox balance, signaling and metabolism. Despite the absolute reliance of oocyte and early embryo development on mitochondrial function, there is little known about the spatial and temporal aspects of ΔΨm during oocyte maturation. The one exception is that previous findings using a ΔΨm indicator, JC-1, report that mitochondria in the cortex show a preferentially increased ΔΨm, relative to the rest of the cytoplasm. Using live-cell imaging and a new ratiometric approach for measuring ΔΨm in mouse oocytes, we find that ΔΨm increases through the time course of oocyte maturation and that mitochondria in the vicinity of the first meiotic spindle show an increase in ΔΨm, compared to other regions of the cytoplasm. We find no evidence for an elevated ΔΨm in the oocyte cortex. These findings suggest that mitochondrial activity is adaptive and responsive to the events of oocyte maturation at both a global and local level. In conclusion, we have provided a new approach to reliably measure ΔΨm that has shed new light onto the spatio-temporal regulation of mitochondrial function in oocytes and early embryos.


Asunto(s)
Potencial de la Membrana Mitocondrial/fisiología , Oocitos/crecimiento & desarrollo , Oogénesis/fisiología , Análisis Espacio-Temporal , Huso Acromático/metabolismo , Animales , Técnicas de Cultivo de Embriones , Desarrollo Embrionario , Femenino , Fertilización In Vitro , Técnicas de Maduración In Vitro de los Oocitos , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA