Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Biodivers ; : e202402052, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39363725

RESUMEN

Breast cancer remains a leading cause of death among women, with estrogen receptor alpha (ERα) overexpression playing a pivotal role in tumor growth and progression. This study aimed to identify novel ERα inhibitors from a library of 561 natural compounds using computational techniques, including virtual screening, molecular docking, and molecular dynamics simulations. Four promising candidates-Protopine, Sanguinarine, Pseudocoptisine, and Stylopine-were selected based on their high binding affinities and interactions with key ERα residues. Molecular dynamics simulations conducted over 500 nanoseconds revealed that Protopine and Sanguinarine exhibited more excellent stability with minimal fluctuations, suggesting strong and stable binding. In contrast, Pseudocoptisine and Stylopine showed higher flexibility, indicating less stable interactions. Binding free energy calculations further supported the potential of Protopine and Sanguinarine as ERα inhibitors, though their binding strength was slightly lower than that of the reference compound. These findings highlight Protopine and Sanguinarine as leading candidates for further investigation, and in vitro and in vivo studies are recommended to evaluate their therapeutic potential in breast cancer treatment.

2.
Arch Biochem Biophys ; 761: 110148, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39265696

RESUMEN

Influenza A virus, particularly the H5N1 strain, poses a significant threat to public health due to its ability to cause severe respiratory illness and its high mortality rate. Traditional antiviral drugs targeting influenza A virus have faced challenges such as drug resistance and limited efficacy. Therefore, new antiviral compounds are needed to be discovered and developed. This study concentrated on examining the stability and behavior of the H5N1 polymerase PB2 CAP-binding domain when interacting with natural compounds, aiming to identify potential candidates for antiviral drug discovery. Through the virtual screening process, four lead compounds, ZINC000096095464, ZINC000044404209, ZINC000001562130, and ZINC000059779788, were selected, and these compounds showed binding energies -9.6, -9.4, -9.3, and -9.2 kcal/mol, respectively. When complexed with PB2, the ligand showed acceptable binding stability due to significant bond formation. However, during the 200ns MD simulation analysis, three (ZINC000096095464, ZINC000044404209, and ZINC000059779788) showed significant stability, which was proven by the trajectory analysis. The Rg-RMSD-based FEL plot showed significant structural stability due to stable conformers. The free-binding energy calculation also validates the stability of these complexes. This study offers valuable insights into the stability and dynamics of the H5N1 polymerase PB2 CAP-binding domain in complexes with natural compounds. These findings highlight the potential of these natural compounds as antiviral agents against the H5N1 influenza virus. Furthermore, this research contributes to the broader field of influenza virus treatment by demonstrating the effectiveness of computational methods in predicting and evaluating the stability and dynamics of potential drug candidates.

3.
Biology (Basel) ; 13(9)2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39336159

RESUMEN

(1) Background: Diabetic retinopathy (DR) is a major complication of diabetes, marked by abnormal angiogenesis, microaneurysms, and retinal hemorrhages. Traditional Ayurvedic medicine advocates multi-target strategies for DR management. However, the mechanisms by which Solanum xanthocarpum (SX) and Plumbago zeylanica (PZ) exert therapeutic effects are not well understood; (2) Methods: To investigate these mechanisms, we employed network pharmacology and molecular docking techniques. Phytochemicals from SX and PZ were identified using the IMPPAT database and Swiss Target Prediction tool. DR-related protein targets were sourced from the GeneCards database, and common targets were identified through Venn diagram analysis. STRING and Cytoscape were used to construct and analyze protein-protein interaction networks. Pathway enrichment was performed with Gene Ontology and KEGG databases; (3) Results: We identified 28 active phytoconstituents, targeting proteins such as EGFR, SRC, STAT3, AKT1, and HSP90AA1. Molecular docking and dynamics simulations confirmed the strong binding affinities of these compounds to their targets; (4) Conclusions: The study highlights the multi-target activity of SX and PZ, particularly in pathways related to EGFR tyrosine kinase inhibitor resistance and PI3K-AKT signaling. These findings provide valuable insights into their therapeutic potential for DR, suggesting the effective modulation of key molecular pathways involved in the disease.

4.
J Microencapsul ; 41(5): 345-359, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38780157

RESUMEN

AIM: The present work is focus on development of anti-psoriasis activity of Karanjin (isolated from Pongamia pinnata seed oil) loaded liposome based lotion for enhancement of skin permeation and retention. METHOD: Karanjin was isolated using liquid-liquid extraction method and characterised by HPLC analysis and partition coefficient. Further, isolated Karanjin was loaded into liposomes using thin-film hydration technique and optimised by Box-Behnken design. Selected optimised batch was characterised their mean diameter, PDI, zeta potential, and entrapment efficiency, morphology (by TEM), FTIR and ex-vivo skin retention. Additionally, Karanjin loaded liposomes were formulated into lotion and characterise their rheological, spreadability, texture, ex-vivo skin permeation & retention, stability and anti-psoriatic activity in mouse tail model. RESULT: The yield of Karanjin from seed oil was 0.1% w/v and have lipophilic nature. The optimised liposomal formulation showed 195 ± 1.8 nm mean diameter, 0.271 ± 0.02 PDI, -27.0 ± 2.1 mV zeta potential and 61.97 ± 2.5% EE. TEM image revel the spherical shap of liposome surrounded by single phospholipid bilayer and no interection between drug and excipients. Further, lotion was prepared by 0.1% w/v carbopol and found to 615 mPa.sec viscosity, good thixotropic behaviour, spreadability and texture. There was 22.44% increase in drug permeation for Karanjin loaded liposomal lotion compared to pure Karanjin lotion, confirm by ex-vivo permeation and retention. While, in-vivo study revel the liposomal lotion of Karanjin was found to have 16.09% higher drug activity then 5% w/w conventional Karanjin lotion. CONCLUSION: Karanjin loaded liposomal lotion have an effective anti-psoriatic agent and showed better skin permeation and retention than the conventional Karanjin lotion.


Asunto(s)
Liposomas , Psoriasis , Absorción Cutánea , Animales , Ratones , Psoriasis/tratamiento farmacológico , Modelos Animales de Enfermedad , Administración Cutánea , Piel , Masculino
5.
Gels ; 10(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38786220

RESUMEN

This research aimed to evaluate the efficacy of a nanoemulgel (NE) containing Cananga odorata (Ylang-Ylang) oil for managing scalp psoriasis and dandruff through various assessments. The study involved phytochemical screening, characterization, stability testing, in vivo performance evaluation, dermatokinetic analysis, central composite rotatable design (CCRD) optimization, in vitro release profiling, and antioxidant and antimicrobial activity assessment of the NE. The NE exhibited excellent stability and maintained physical parameters over a three-month period. In vivo studies showed no skin irritation, maintenance of skin pH (4.55 to 5.08), and improvement in skin hydration (18.09 to 41.28 AU) and sebum content (26.75 to 5.67 mg/cm2). Dermatokinetic analysis revealed higher skin retention of C. odorata in the NE (epidermis: 71.266 µg/cm2, dermis: 60.179 µg/cm2) compared to conventional formulations. CCRD optimization yielded NE formulations with the desired particle size (195.64 nm), entrapment efficiency (85.51%), and zeta potential (-20.59 mV). In vitro release studies indicated sustained release behavior, and antioxidant and antimicrobial properties were observed. This study demonstrates the stability, skin-friendliness, therapeutic benefits, and controlled release properties of the NE. The NE presents a promising option for various topical applications in treating bacterial and fungal diseases, potentially enhancing drug delivery and treatment outcomes in pharmaceuticals and cosmetics.

6.
bioRxiv ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38746225

RESUMEN

During heart failure, gene and protein expression profiles undergo extensive compensatory and pathological remodeling. We previously observed that fast skeletal myosin binding protein-C (fMyBP-C) is upregulated in diseased mouse hearts. While fMyBP-C shares significant homology with its cardiac paralog, cardiac myosin binding protein-C (cMyBP-C), there are key differences that may affect cardiac function. However, it is unknown if the expression of fMyBP-C expression in the heart is a pathological or compensatory response. We aim to elucidate the cardiac consequence of either increased or knockout of fMyBP-C expression. To determine the sufficiency of fMyBP-C to cause cardiac dysfunction, we generated cardiac-specific fMyBP-C over-expression mice. These mice were further crossed into a cMyBP-C null model to assess the effect of fMyBP-C in the heart in the complete absence of cMyBP-C. Finally, fMyBP-C null mice underwent transverse aortic constriction (TAC) to define the requirement of fMyBP-C during heart failure development. We confirmed the upregulation of fMyBP-C in several models of cardiac disease, including the use of lineage tracing. Low levels of fMyBP-C caused mild cardiac remodeling and sarcomere dysfunction. Exclusive expression of fMyBP-C in a heart failure model further exacerbated cardiac pathology. Following 8 weeks of TAC, fMyBP-C null mice demonstrated greater protection against heart failure development. Mechanistically, this may be due to the differential regulation of the myosin super-relaxed state. These findings suggest that the elevated expression of fMyBP-C in diseased hearts is a pathological response. Targeted therapies to prevent upregulation of fMyBP-C may prove beneficial in the treatment of heart failure. Significance Statement: Recently, the sarcomere - the machinery that controls heart and muscle contraction - has emerged as a central target for development of cardiac therapeutics. However, there remains much to understand about how the sarcomere is modified in response to disease. We recently discovered that a protein normally expressed in skeletal muscle, is present in the heart in certain settings of heart disease. How this skeletal muscle protein affects the function of the heart remained unknown. Using genetically engineered mouse models to modulate expression of this skeletal muscle protein, we determined that expression of this skeletal muscle protein in the heart negatively affects cardiac performance. Importantly, deletion of this protein from the heart could improve heart function suggesting a possible therapeutic avenue.

7.
Biophys Chem ; 307: 107195, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38325036

RESUMEN

This paper delves into an investigation of the solubility characteristics of L-tryptophan within binary solvent systems containing aqueous acetonitrile. The primary emphasis of the study revolves around assessments based on mole fractions. The study utilizes these solubility values to assess thermodynamic constraints, including solution entropies and solution transfer free energetics. The calculated thermodynamic energies are correlated with interaction parameters, including Gibbs free energies and entropies, pertaining to the transfer of L-tryptophanfrom water to binary solvent blends of acetonitrile and water. Mathematical expressions are utilized to determine the transfer Gibbs free energies for chemical interactions, and the consequent entropies are clarified within the framework of solvent-solvent interactions. To expound upon the stability of L-tryptophan within the water-acetonitrile mixed system, we investigate the energetic aspects related to the transfer of chemicals Gibbs free energies. Additionally, standard temperature (298.15 K) is employed to calculate various related physicochemical parameters of solute/solvent.


Asunto(s)
Triptófano , Agua , Temperatura , Solubilidad , Termodinámica , Solventes
8.
Gels ; 10(2)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38391449

RESUMEN

The goal of this investigation is to improve the topical delivery of medicine by preparing and maximizing the potential of a nanotransferosome gel infused with Solanum xanthocarpum methanolic extract (SXE) to provide localized and regulated distribution. Thin-film hydration was used to create SXE-infused nanotransferosomes (SXE-NTFs), and a Box-Behnken design was used to improve them. Phospholipon 90G (X1), cholesterol (X2) and sodium cholate (X3) were chosen as the independent variables, and their effects on vesicle size (Y1), polydispersity index (PDI) (Y2) and the percentage of entrapment efficiency (EE) (Y3) were observed both individually and in combination. For the SXE-NTFs, the vesicle size was 146.3 nm, the PDI was 0.2594, the EE was 82.24 ± 2.64%, the drug-loading capacity was 8.367 ± 0.07% and the drug release rate was 78.86 ± 5.24%. Comparing the antioxidant activity to conventional ascorbic acid, it was determined to be 83.51 ± 3.27%. Ex vivo permeation tests revealed that the SXE-NTF gel (82.86 ± 2.38%) considerably outperformed the SXE gel (35.28 ± 1.62%) in terms of permeation. In addition, it seemed from the confocal laser scanning microscopy (CLSM) picture of the Wistar rat's skin that the rhodamine-B-loaded SXE-NTF gel had a higher penetration capability than the control. Dermatokinetic studies showed that the SXE-NTF gel had a better retention capability than the SXE gel. According to the experimental results, the SXE-NTF gel is a promising and successful topical delivery formulation.

9.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-38004427

RESUMEN

In a continuous search for an essential antidiabetic agent, Sida cordifolia hydroalcoholic (SCHA) extract-loaded chitosan nanoparticles (SCHA-CS-NP) were optimized. The Box-Behnken design (BBD Design-Expert software, version 14) with three parameters was used to optimize the nanoparticles after creating them using the ion gelation method. The chitosan and Tween 20 contents and the stirring speed were chosen as the independent variables, and their separate and combined effects on particle size (Y1), polydispersity index (Y2) and entrapment efficiency (Y3) were observed. The optimized formulation showed a particle size of 51 nm, an entrapment efficiency of 84.54% and a polydispersity index of 0.391. Physicochemical characterization, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), a drug release study, an ex vivo permeation study, and an antioxidant study were performed. Confocal laser scanning microscopy (CLSM) images demonstrated that chitosan nanoparticles loaded with rhodamine B-laden SCHA extract had superior penetration compared to the control (rhodamine B solution). Furthermore, compared to conventional ascorbic acid (IC50 = 45 µg/mL), a superior antioxidant activity was discovered for SCHA-CS-NPs (IC50 = 86.45 ± 2.24 µg/mL), while SCHA-CS-NPs also exhibited strong antidiabetic potential (IC50 = 93.71 ± 1.79 µg/mL) compared to standard acarbose (IC50 = 97.25 ± 1.43 µg/mL). The overall results demonstrated that SCHA-CS-NPs are a promising and efficient formulation for oral delivery.

10.
Gels ; 9(10)2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37888364

RESUMEN

In this study, hesperidin was loaded into a transethosome and was developed employing the rotary evaporator method. The formulation was optimized using the Box-Behnken design (BBD). The optimized HSD-TE formulation has a spherical shape, vesicle size, polydispersity index, entrapment efficiency, and zeta potential within the range of 178.98 nm; the PDI was 0.259 with a zeta potential of -31.14 mV and % EE of 89.51%, respectively. The in vitro drug release shows that HSD-TE exhibited the release of 81.124 ± 3.45% in comparison to HSD suspension. The ex vivo skin permeation showed a 2-fold increase in HSD-TE gel permeation. The antioxidant activity of HSD-TE was found to be 79.20 ± 1.77% higher than that of the HSD solution. The formulation showed 2-fold deeper HSD-TE penetration across excised rat skin membranes in confocal laser microscopy scanning, indicating promising in vivo prospects. In a dermatokinetic study, HSD-TE gel was compared to HSD conventional gel where TE significantly boosted HSD transport in the epidermis and dermal layers. The formulation showed greater efficacy than free HSD in the inhibition of microbial growth, as evidenced by antibacterial activity on the Gram-negative and positive bacteria. These investigations found that the HSD-TE formulation could enhance the topical application in the management of cutaneous bacterial infections.

11.
Gels ; 9(10)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37888405

RESUMEN

Strychnine (STCN) has demonstrated an exceptional anticancer effect against various cancers. However, the STCN clinical utility has been hampered by its low water solubility, restricted therapeutic window, short half-life, and significant toxicity. The objective of this investigation was to design and optimize a formulation of strychnine-loaded transliposomes (STCN-TLs) for dermal administration of STCN to treat skin cancer. The formulations of STCN-TL were examined in terms of vesicle size (VS), polydispersity index (PDI), entrapment efficiency (EE), and in vitro delivery. The improved STCN-TL formulation exhibited VS, PDI, EE, and in vitro delivery of 101.5 ± 2.14 nm, 0.218 ± 0.12, 81.74 ± 1.43%, and 85.39 ± 2.33%, respectively. In an ex vivo penetration, the created STCN-TL formulation demonstrated a 2.5-fold increase in permeability compared to the STCN solution. CLSM pictures of skin (rat) revealed that the rhodamine B-loaded transliposome preparation penetrated deeper than the rhodamine B hydroalcoholic mixture. Additionally, rat skin managed with STCN-TL nanogel exhibited a significant increase in Cskin max and AUC0-8 compared to rat skin treated with traditional STCN gel. The findings demonstrated that the transliposome preparation might be a suitable nanocarrier for the cutaneous distribution of STCN in the amelioration of skin cancer.

12.
Saudi Pharm J ; 31(11): 101788, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37811124

RESUMEN

Solanum xanthocarpum (SX) has been used to treat a variety of diseases, including skin disorders like psoriasis (PSO). SX possesses many pharmacological activities of anti-inflammatory, anti-cancer, immunosuppressive, and healing qualities. However, the multi-target mechanism of SX on PSO still needs clarity. Materials and methods: The Indian Medicinal Plants, Phytochemicals and Therapeutics (IMPPAT) database and the Swiss Target Prediction online tool were used to find the active phytochemical components and their associated target proteins. OMIM and GeneCards databases were used to extract PSO-related targets. A Venn diagram analysis determined the common targets of SX against PSO. Subsequently, the protein-protein interaction (PPI) network and core PPI target analysis were carried out using the STRING network and Cytoscape software. Also, utilising the online Metascape and bioinformatics platform tool, a pathway enrichment analysis of common targets using the Kyoto Encyclopaedia of Genes and Genome (KEGG) and Gene Ontology (GO) databases was conducted to verify the role of targets in biological processes, cellular components and molecular functions with respect to KEGG pathways. Lastly, molecular docking simulations were performed to validate the strong affinity between components of SX and key target receptors. Results: According to the IMPPAT Database information, 8 active SX against PSO components were active. According to the PPI network and core targets study, the main targets against PSO were EGFR, SRC, STAT3, ERBB2, PTK2, SYK, EP300, CBL, TP53, and AR. Moreover, molecular docking simulations verified the binding interaction of phytochemical SX components with their PSO targets. Last but not least, enrichment analysis showed that SX is involved in several biological processes, including peptidyl-tyrosine phosphorylation, peptidyl-tyrosine modification, and peptidyl-serine modification. The relevant KEGG signalling pathways are the PI3K-AKT signalling pathway, the EGFR tyrosine kinase inhibitor resistance pathway, and the MAPK signalling pathway. Conclusion: The network pharmacology technique, which is based on data interpretation and molecular docking simulation techniques, has proven the multi-target function of SX phytoconstituents.

13.
Saudi Pharm J ; 31(10): 101785, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37766819

RESUMEN

One of the most prevalent lifestyle diseases, diabetes mellitus (DM) is brought on by an endocrine issue. DM is frequently accompanied by hyperglycemia, a disease that typically results in an excess of free radicals that stress tissues. The medical community is currently concentrating on creating therapeutic medications with roots in nature to lessen the damage associated with hyperglycemia. Solanum xanthocarpum has a number of medicinal benefits. The investigation aimed to produce and analyze niosomal formulations containing S. xanthocarpum extract (SXE). Niosomes were made by implementing the solvent evaporation process, which was further optimized using Box-Behnken design. Drug release, DPPH assessments, α-amylase inhibition assay, α-glucosidase inhibition assay, and confocal laser scanning microscopy (CLSM) investigation were all performed on the developed formulation (SXE-Ns-Opt). SXE-Ns-Opt displayed a 253.6 nm vesicle size, a PDI of 0.108, 62.4% entrapment efficiency, and 84.01% drug release in 24 h. The rat's intestinal CLSM image indicated that the rhodamine red B-loaded SXE-Ns-Opts had more intestinal penetration than the control. Additionally, the antioxidant effect of the obtained formulation was demonstrated as 89.46% as compared to SXE (78.10%). Additionally, acarbose, SXE, and SXE-Ns-Opt each inhibited the activity of α-amylase by 95.11%, 85.88%, and 89.87%, and also suppressed the enzyme of α-glucosidase by 88.47%, 81.07%, and 85.78%, respectively. To summarise, the establishment of the SXE-Ns-Opt formulation and its characterization demonstrated the legitimacy of the foundation. A promising candidate for the treatment of diabetes mellitus has been shown as in vitro studies, antioxidant against oxidative stress, CLSM of rat's intestine and a high degree of penetration of formulation.

14.
Saudi Pharm J ; 31(8): 101669, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37576853

RESUMEN

Previous investigations have shown that D. viscosa herbal extract is often used to treat a variety of diseases. Therefore, the purpose of this study was to investigate any additional potential impacts on rat liver and kidney damage induced by diabetes. Streptozotocin (STZ) (60 mg/kg/day) was given as a single dosage to cause type 1 diabetes. After then, diabetic rats received oral doses of D. viscosa for four weeks at 150 and 300 mg/kg/day. Blood, liver, and kidney tissues were collected at the end of the treatment and examined. Analysis was made of the serum lipid profile, liver, and kidney functions, as well as blood biochemistry. Moreover, the levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1 beta (IL-1ß), prostaglandin E-2 (PGE-2), and nitric oxide (NO) were estimated in serum. In liver and kidney samples, thiobarbituric acid reactive substances (TBARs) and reduced glutathione (GSH), as well as the pro-inflammatory cytokines and enzymatic activities of glutathione peroxidase (GPx), glutathione reeducates (GR), glutathione-S-transferase (GST), catalase (CAT), and superoxide dismutase (SOD) were analyzed. Histological changes in liver and kidney cross-sections were also observed. Our findings demonstrated that D. viscosa dramatically decreased pro-inflammatory indicators in blood, kidney, and liver tissues as well as blood glucose, and restored insulin levels, and lipid profiles. Additionally, it significantly raises the antioxidant enzyme activity SOD, CAT, GPx, and GST, while significantly lowering TBARs levels. The above-mentioned biochemical changes that took place in tissues were further supported by histological alterations. These findings imply that D. viscosa protects against STZ-induced hyperglycemia, aberrant lipid synthesis, and oxidative stress and that these benefits may be mediated by interacting with various targets to increase the levels of antioxidant enzymes in the liver and kidneys. Its mode of action and safety for use as medicine against various metabolic problems caused by diabetes require more research.

15.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37111255

RESUMEN

Phytochemical investigation of the ethanolic extract of the aerial parts of Sisymbrium irio L. led to the isolation of four unsaturated fatty acids (1-4), including a new one (4), and four indole alkaloids (5-8). The structures of the isolated compounds were characterized with the help of spectroscopic techniques such as 1D, 2D NMR, and mass spectroscopy, and by correlation with the known compounds. In terms of their notable structural diversity, a molecular docking approach with the AutoDock 4.2 program was used to analyze the interactions of the identified fatty acids with PPAR-γ and the indole alkaloids with 5-HT1A and 5-HT2A, subtypes of serotonin receptors, respectively. Compared to the antidiabetic drug rivoglitazone, compound 3 acted as a potential PPAR-γ agonist with a binding energy of -7.4 kcal mol-1. Moreover, compound 8 displayed the strongest affinity, with binding energies of -6.9 kcal/mol to 5HT1A and -8.1 kcal/mol to 5HT2A, using serotonin and the antipsychotic drug risperidone as positive controls, respectively. The results of docked conformations represent an interesting target for developing novel antidiabetic and antipsychotic drugs and warrant further evaluation of these ligands in vitro and in vivo. On the other hand, an HPTLC method was developed to quantify α-linolenic acid in the hexane fraction of the ethanol extract of S. irio. The regression equation/correlation coefficient (r2) for linolenic acid was Y = 6.49X + 2310.8/0.9971 in the linearity range of 100-1200 ng/band. The content of α-linolenic acid in S. irio aerial parts was found to be 28.67 µg/mg of dried extract.

16.
bioRxiv ; 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36711986

RESUMEN

Myocardial ischemia/reperfusion (I/R) injury and the resulting cardiac remodeling is a common cause of heart failure. The RNA binding protein Human Antigen R (HuR) has been previously shown to reduce cardiac remodeling following both I/R and cardiac pressure overload, but the full extent of the HuR-dependent mechanisms within cells of the myocardium have yet to be elucidated. In this study, we applied a novel small molecule inhibitor of HuR to define the functional role of HuR in the acute response to I/R injury and gain a better understanding of the HuR-dependent mechanisms during post-ischemic myocardial remodeling. Our results show an early (two hours post-I/R) increase in HuR activity that is necessary for early inflammatory gene expression by cardiomyocytes in response to I/R. Surprisingly, despite the reductions in early inflammatory gene expression at two hours post-I/R, HuR inhibition has no effect on initial infarct size at 24-hours post-I/R. However, in agreement with previously published work, we do see a reduction in pathological remodeling and preserved cardiac function at two weeks post-I/R upon HuR inhibition. RNA-sequencing analysis of neonatal rat ventricular myocytes (NRVMs) at two hours post-LPS treatment to model damage associated molecular pattern (DAMP)-mediated activation of toll like receptors (TLRs) demonstrates a broad HuR-dependent regulation of pro-inflammatory chemokine and cytokine gene expression in cardiomyocytes. We show that conditioned media from NRVMs pre-treated with HuR inhibitor loses the ability to induce inflammatory gene expression in bone marrow derived macrophages (BMDMs) compared to NRVMs treated with LPS alone. Functionally, HuR inhibition in NRVMs also reduces their ability to induce endocrine migration of peripheral blood monocytes in vitro and reduces post-ischemic macrophage infiltration to the heart in vivo. In summary, these results suggest a HuR-dependent expression of pro-inflammatory gene expression by cardiomyocytes that leads to subsequent monocyte recruitment and macrophage activation in the post-ischemic myocardium.

17.
Molecules ; 27(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35011528

RESUMEN

In this study, ultrasound-assisted extraction conditions were optimized to maximize the yields of sennoside A, sennoside B, aloe-emodin, emodin, and chrysophanol from S. alexandrina (aerial parts). The three UAE factors, extraction temperature (S1), extraction time (S2), and liquid to solid ratio (S3), were optimized using response surface methodology (RSM). A Box-Behnken design was used for experimental design and phytoconstituent analysis was performed using high-performance liquid chromatography-UV. The optimal extraction conditions were found to be a 64.2 °C extraction temperature, 52.1 min extraction time, and 25.2 mL/g liquid to solid ratio. The experimental values of sennoside A, sennoside B, aloe-emodin, emodin, and chrysophanol (2.237, 12.792, 2.457, 0.261, and 1.529%, respectively) agreed with those predicted (2.152, 12.031, 2.331, 0.214, and 1.411%, respectively) by RSM models, thus demonstrating the appropriateness of the model used and the accomplishment of RSM in optimizing the extraction conditions. Excellent antioxidant properties were exhibited by S. alexandrina methanol extract obtained using the optimized extraction conditions with a DPPH assay (IC50 = 59.7 ± 1.93, µg/mL) and ABTS method (47.2 ± 1.40, µg/mL) compared to standard ascorbic acid.


Asunto(s)
Antioxidantes/farmacología , Fraccionamiento Químico/métodos , Componentes Aéreos de las Plantas/química , Extracto de Senna/farmacología , Senna/química , Sonicación , Ondas Ultrasónicas , Algoritmos , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Modelos Teóricos , Estructura Molecular , Fitoquímicos , Extracto de Senna/química , Extracto de Senna/aislamiento & purificación
18.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34884909

RESUMEN

The limited ability of mammalian adult cardiomyocytes to proliferate following an injury to the heart, such as myocardial infarction, is a major factor that results in adverse fibrotic and myocardial remodeling that ultimately leads to heart failure. The continued high degree of heart failure-associated morbidity and lethality requires the special attention of researchers worldwide to develop efficient therapeutics for cardiac repair. Recently, various strategies and approaches have been developed and tested to extrinsically induce regeneration and restoration of the myocardium after cardiac injury have yielded encouraging results. Nevertheless, these interventions still lack adequate success to be used for clinical interventions. This review highlights and discusses both cell-based and cell-free therapeutic approaches as well as current advancements, major limitations, and future perspectives towards developing an efficient therapeutic method for cardiac repair.


Asunto(s)
Infarto del Miocardio/patología , Comunicación Paracrina , Animales , Tratamiento Basado en Trasplante de Células y Tejidos , Exosomas/metabolismo , Exosomas/trasplante , Humanos , Infarto del Miocardio/terapia , Comunicación Paracrina/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
19.
Am J Physiol Heart Circ Physiol ; 321(1): H228-H241, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34018851

RESUMEN

Adipose tissue homeostasis plays a central role in cardiovascular physiology, and the presence of thermogenically active brown adipose tissue (BAT) has recently been associated with cardiometabolic health. We have previously shown that adipose tissue-specific deletion of HuR (Adipo-HuR-/-) reduces BAT-mediated adaptive thermogenesis, and the goal of this work was to identify the cardiovascular impacts of Adipo-HuR-/-. We found that Adipo-HuR-/- mice exhibit a hypercontractile phenotype that is accompanied by increased left ventricle wall thickness and hypertrophic gene expression. Furthermore, hearts from Adipo-HuR-/- mice display increased fibrosis via picrosirius red staining and periostin expression. To identify underlying mechanisms, we applied both RNA-seq and weighted gene coexpression network analysis (WGCNA) across both cardiac and adipose tissue to define HuR-dependent changes in gene expression as well as significant relationships between adipose tissue gene expression and cardiac fibrosis. RNA-seq results demonstrated a significant increase in proinflammatory gene expression in both cardiac and subcutaneous white adipose tissue (scWAT) from Adipo-HuR-/- mice that is accompanied by an increase in serum levels of both TNF-α and IL-6. In addition to inflammation-related genes, WGCNA identified a significant enrichment in extracellular vesicle-mediated transport and exosome-associated genes in scWAT, whose expression most significantly associated with the degree of cardiac fibrosis observed in Adipo-HuR-/- mice, implicating these processes as a likely adipose-to-cardiac paracrine mechanism. These results are significant in that they demonstrate the spontaneous onset of cardiovascular pathology in an adipose tissue-specific gene deletion model and contribute to our understanding of how disruptions in adipose tissue homeostasis may mediate cardiovascular disease.NEW & NOTEWORTHY The presence of functional brown adipose tissue in humans is known to be associated with cardiovascular health. Here, we show that adipocyte-specific deletion of the RNA binding protein HuR, which we have previously shown to reduce BAT-mediated thermogenesis, is sufficient to mediate a spontaneous development of cardiac hypertrophy and fibrosis. These results may have implications on the mechanisms by which BAT function and adipose tissue homeostasis directly mediate cardiovascular disease.


Asunto(s)
Adipocitos/metabolismo , Cardiomegalia/genética , Proteína 1 Similar a ELAV/genética , Miocardio/metabolismo , Adipocitos/patología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/patología , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Animales , Cardiomegalia/metabolismo , Cardiomegalia/patología , Proteína 1 Similar a ELAV/metabolismo , Fibrosis/genética , Fibrosis/metabolismo , Fibrosis/patología , Ratones , Ratones Noqueados , Miocardio/patología
20.
Hum Mol Genet ; 30(18): 1734-1749, 2021 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-34007987

RESUMEN

High-altitude (HA, >2500 m) hypoxic exposure evokes several physiological processes that may be abetted by differential genetic distribution in sojourners, who are susceptible to various HA disorders, such as high-altitude pulmonary edema (HAPE). The genetic variants in hypoxia-sensing genes influence the transcriptional output; however the functional role has not been investigated in HAPE. This study explored the two hypoxia-sensing genes, prolyl hydroxylase domain protein 2 (EGLN1) and factor inhibiting HIF-1α (HIF1AN) in HA adaptation and maladaptation in three well-characterized groups: highland natives, HAPE-free controls and HAPE-patients. The two genes were sequenced and subsequently validated through genotyping of significant single nucleotide polymorphisms (SNPs), haplotyping and multifactor dimensionality reduction. Three EGLN1 SNPs rs1538664, rs479200 and rs480902 and their haplotypes emerged significant in HAPE. Blood gene expression and protein levels also differed significantly (P < 0.05) and correlated with clinical parameters and respective alleles. The RegulomeDB annotation exercises of the loci corroborated regulatory role. Allele-specific differential expression was evidenced by luciferase assay followed by electrophoretic mobility shift assay, liquid chromatography with tandem mass spectrometry and supershift assays, which confirmed allele-specific transcription factor (TF) binding of FUS RNA-binding protein (FUS) with rs1538664A, Rho GDP dissociation inhibitor 1 (ARHDGIA) with rs479200T and hypoxia upregulated protein 1 (HYOU1) with rs480902C. Docking simulation studies were in sync for the DNA-TF structural variations. There was strong networking among the TFs that revealed physiological consequences through relevant pathways. The two hydroxylases appear crucial in the regulation of hypoxia-inducible responses.


Asunto(s)
Mal de Altura , Sitios Genéticos , Hipertensión Pulmonar , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Oxigenasas de Función Mixta , Polimorfismo de Nucleótido Simple , Edema Pulmonar , Proteínas Represoras , Células A549 , Altitud , Mal de Altura/enzimología , Mal de Altura/genética , Femenino , Regulación Enzimológica de la Expresión Génica , Humanos , Hipertensión Pulmonar/enzimología , Hipertensión Pulmonar/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/biosíntesis , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Masculino , Oxigenasas de Función Mixta/biosíntesis , Oxigenasas de Función Mixta/genética , Edema Pulmonar/enzimología , Edema Pulmonar/genética , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA