Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Omega ; 9(18): 20322-20330, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38737024

RESUMEN

This study addresses the pivotal challenge of hydrogen production through methane decomposition, offering a pathway to achieving clean energy goals. Investigating the utilization of titania-modified zirconia dual redox supports (10TiZr) in iron or doped iron-based catalysts for the CH4 decomposition reaction, our research involves a thorough characterization process. This includes analyses of the surface area porosity, X-ray diffraction, Raman-infrared spectroscopy, and temperature-programmed reduction/oxidation. The observed sustained enhancement in catalytic activity over extended durations suggests the in situ formation of catalytically active sites. The introduction of Co or Ni into the 30Fe/10TiZr catalyst leads to the generation of a higher density of reducible species. Furthermore, the Ni-promoted 30Fe/10TiZr catalyst exhibits a lower crystallinity, indicating superior dispersion. Notably, the cobalt-promoted 30Fe/10TiZr catalyst achieves over 80% CH4 conversion and H2 yield within 3 h. Additionally, the Ni-promoted 30Fe/10TiZr catalyst attains a remarkable 87% CH4 conversion and 82% H2 yield after 3 h of the continuous process.

2.
Nanomaterials (Basel) ; 13(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37947719

RESUMEN

The catalytic conversion of CH4 and CO2 into H2-rich syngas is known as the dry reforming of methane (DRM). The dissociation of CH4 over active sites, coupled with the oxidation or polymerization of CH4-x (x = 1-4), plays a crucial role in determining in determining the DRM product yield and coke deposition. Herein, a series of bimetallic-supported catalysts are prepared by the dispersion of Ni-M (M = Ce, Co, Fe, and Sr) over 60 wt% MgO-40 wt% Al2O3 (60Mg40Al) support. Catalysts are tested for DRM and characterized with XRD, surface area and porosity, temperature-programmed reduction/desorption, UV-VIS-Raman spectroscopy, and thermogravimetry. 2.5Ni2.5Sr/60Mg40Al and 2.5Ni2.5Fe/60Mg40Al, and 2.5Ni2.5Ce/60Mg40Al and 2.5Ni2.5Co/60Mg40Al have similar CO2 interaction profiles. The 2.5Ni2.5Sr/60Mg40Al catalyst nurtures inert-type coke, whereas 2.5Ni2.5Fe/60Mg40Al accelerates the deposition of huge coke, which results in catalytic inferiority. The higher activity over 2.5Ni2.5Ce/60Mg40Al is due to the instant lattice oxygen-endowing capacity for oxidizing coke. Retaining a high DRM activity (54% H2-yield) up to 24 h even against a huge coke deposition (weight loss 46%) over 2.5Ni2.5Co/60Mg40Al is due to the timely diffusion of coke far from the active sites or the mounting of active sites over the carbon nanotube.

3.
ChemistryOpen ; 12(9): e202300112, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37688328

RESUMEN

Methane decomposition is a promising route to synthesize COx -free hydrogen and carbon nanomaterials (CNMs ). In this work, the impregnation method was employed for the preparation of the catalysts. Systematic investigations on the activity and stability of Fe-based catalysts were carried out in a packed-bed micro-activity reactor at 800 °C with a feed gas flow rate of 18 mL/min. The effect of doping Y2 O3 , MgO, SiO2 and TiO2 over ZrO2 on the catalytic performance was also studied. BET revealed that the specific surface areas and pore volumes are increased after SiO2 , TiO2 , and Y2 O3 are added to ZrO2 while MgO had a negative impact and hence a little decrease in specific surface area is observed. The catalytic activity results showed that the Fe-based catalyst supported over TiO2 -doped ZrO2 that is, Fe-TiZr, demonstrated the highest activity and stability, with a maximum methane conversion of 81.3 % during 180 min time-on-stream. At 800 °C, a maximum initial methane conversion of 73 %, 38 %, 64 %, and 69 % and a final carbon yield of 121 wt. %, 55 wt. %, 354 wt. %, and 174 wt. % was achieved using Fe-MgZr, Fe-SiZr, Fe-TiZr and Fe-YZr catalysts, respectively. Moreover, bulk deposition of uniform carbon nanotubes with a high degree of graphitization and different diameters was observed over the catalysts.

4.
Materials (Basel) ; 16(3)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36770167

RESUMEN

The dry reforming of methane (DRM) was studied for seven hours at 800 °C and 42 L/(g·h) gas hourly space velocity over Ni-based catalysts, promoted with various amounts of gadolinium oxide (x = 0.0, 1.0, 2.0, 3.0, 4.0, and 5.0 wt.%) and supported on mesoporous yttrium-zirconium oxide (YZr). The best catalyst was found to have 4.0 wt.% of gadolinium, which resulted in ∼80% and ∼86% conversions of CH4 and CO2, respectively, and a mole ratio of ∼0.90 H2/CO. The addition of Gd2O3 shifted the diffraction peaks of the support to higher angles, indicating the incorporation of the promoter into the unit cell of the YZr support. The Gd2O3 promoter improved the catalyst basicity and the interaction of NiO with support, which were reflected in the coke resistance (6.0 wt.% carbon deposit on 5Ni+4Gd/YZr; 19.0 wt.% carbon deposit on 5Ni/YZr) and the stability of our catalysts. The Gd2O3 is believed to react with carbon dioxide to form oxycarbonate species and helps to gasify the surface of the catalysts. In addition, the Gd2O3 enhanced the activation of CH4 and its conversion on the metallic nickel sites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA