Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Gene Med ; 26(8): e3726, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39160647

RESUMEN

BACKGROUND: Conventional adeno-associated viral (AAV) vectors, while highly effective in quiescent cells such as hepatocytes in the adult liver, confer less durable transgene expression in proliferating cells owing to episome loss. Sustained therapeutic success is therefore less likely in liver disorders requiring early intervention. We have previously developed a hybrid, dual virion approach, recombinant AAV (rAAV)/piggyBac transposon system capable of achieving stable gene transfer in proliferating hepatocytes at levels many fold above conventional AAV vectors. An alternative transposon system, Sleeping Beauty, has been widely used for ex vivo gene delivery; however liver-targeted delivery using a hybrid rAAV/Sleeping Beauty approach remains relatively unexplored. METHODS: We investigated the capacity of a Sleeping Beauty (SB)-based dual rAAV virion approach to achieve stable and efficient gene transfer to the newborn murine liver using transposable therapeutic cassettes encoding coagulation factor IX or ornithine transcarbamylase (OTC). RESULTS: At equivalent doses, rAAV/SB100X transduced hepatocytes with high efficiency, achieving stable expression into adulthood. Compared with conventional AAV, the proportion of hepatocytes transduced, and factor IX and OTC activity levels, were both markedly increased. The proportion of hepatocytes stably transduced increased 4- to 8-fold from <5%, and activity levels increased correspondingly, with markedly increased survival and stable urinary orotate levels in the OTC-deficient Spfash mouse following elimination of residual endogenous murine OTC. CONCLUSIONS: The present study demonstrates the first in vivo utility of a hybrid rAAV/SB100X transposon system to achieve stable long-term therapeutic gene expression following delivery to the highly proliferative newborn mouse liver. These results have relevance to the treatment of genetic metabolic liver diseases with neonatal onset.


Asunto(s)
Animales Recién Nacidos , Elementos Transponibles de ADN , Dependovirus , Técnicas de Transferencia de Gen , Vectores Genéticos , Hepatocitos , Hígado , Transducción Genética , Animales , Dependovirus/genética , Elementos Transponibles de ADN/genética , Hígado/metabolismo , Ratones , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Hepatocitos/metabolismo , Factor IX/genética , Ornitina Carbamoiltransferasa/genética , Ornitina Carbamoiltransferasa/metabolismo , Transposasas/genética , Transposasas/metabolismo , Humanos , Transgenes , Terapia Genética/métodos , Ratones Endogámicos C57BL
2.
J Gene Med ; 26(8): e3721, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39114903

RESUMEN

To date, 3,900 gene therapy clinical trials have been completed, are ongoing or have been approved worldwide. Our database brings together global information on gene therapy clinical activity from trial databases, official agency sources, published literature, conference presentations and posters kindly provided to us by individual investigators or trial sponsors. This review presents our analysis of clinical trials that, to the best of our knowledge, have been or are being performed worldwide. As of our March 2023 update, we have entries on 3,900 trials undertaken in 46 countries. We have analyzed the geographical distribution of trials, the disease indications (or other reasons) for trials, the proportions to which different vector types are used, and which genes have been transferred. Details of the analyses presented, and our searchable database are on The Journal of Gene Medicine Gene Therapy Clinical Trials Worldwide website at https://a873679.fmphost.com/fmi/webd/GTCT. We also provide an overview of the progress being made around the world, and discuss key trends since the previous review, namely the unprecedented increase in gene therapy clinical trial activity, including the implementation of genome editing technology with the potential to transform the field moving forward.


Asunto(s)
Ensayos Clínicos como Asunto , Terapia Genética , Humanos , Terapia Genética/métodos , Terapia Genética/tendencias , Edición Génica/métodos , Vectores Genéticos
3.
Mol Ther ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38981468

RESUMEN

Recombinant adeno-associated virus (rAAV) vector gene delivery systems have demonstrated great promise in clinical trials but continue to face durability and dose-related challenges. Unlike rAAV gene therapy, integrating gene addition approaches can provide curative expression in mitotically active cells and pediatric populations. We explored a novel in vivo delivery approach based on an engineered transposase, Sleeping Beauty (SB100X), delivered as an mRNA within a lipid nanoparticle (LNP), in combination with an rAAV-delivered transposable transgene. This combinatorial approach achieved correction of ornithine transcarbamylase deficiency in the neonatal Spfash mouse model following a single delivery to dividing hepatocytes in the newborn liver. Correction remained stable into adulthood, while a conventional rAAV approach resulted in a return to the disease state. In non-human primates, integration by transposition, mediated by this technology, improved gene expression 10-fold over conventional rAAV-mediated gene transfer while requiring 5-fold less vector. Additionally, integration site analysis confirmed a random profile while specifically targeting TA dinucleotides across the genome. Together, these findings demonstrate that transposable elements can improve rAAV-delivered therapies by lowering the vector dose requirement and associated toxicity while expanding target cell types.

4.
bioRxiv ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38746165

RESUMEN

Monoclonal antibodies (mAbs) are useful tools to dissect the neutralizing antibody response against the adeno-associated virus (AAV) capsids used as gene therapy delivery vectors. This study structurally characterizes the interactions of 21 human-derived antibodies from patients treated with the AAV9 vector, Zolgensma ® , utilizing high-resolution cryo-electron microscopy. The majority of the bound antibodies do not conform to the icosahedral symmetry of the capsid, thus requiring localized reconstructions. These complex structures provide unprecedented details of the mAbs binding interfaces, with some antibodies inducing structural perturbations of the capsid upon binding. Key surface capsid amino acid residues were identified facilitating the design of capsid variants with an antibody escape phenotype, with the potential to expand the patient cohort treatable with AAV9 vectors to include those that were previously excluded due to their pre-existing neutralizing antibodies, and possibly also to those requiring redosing.

5.
Mol Ther Methods Clin Dev ; 32(2): 101234, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38558569

RESUMEN

Gene therapies and associated technologies are transforming biomedical research and enabling novel therapeutic options for patients living with debilitating and incurable genetic disorders. The vector system based on recombinant adeno-associated viral vectors (AAVs) has shown great promise in recent clinical trials for genetic diseases of multiple organs, such as the liver and the nervous system. Despite recent successes toward the development of novel bioengineered AAV variants for improved transduction of primary human tissues and cells, vectors that can efficiently transduce human Schwann cells (hSCs) have yet to be identified. Here, we report the application of the functional transduction-RNA selection method in primary hSCs for the development of AAV variants for specific and efficient transgene delivery to hSCs. The two identified capsid variants, Pep2hSC1 and Pep2hSC2, show conserved potency for delivery across various in vitro, in vivo, and ex vivo models of hSCs. These novel AAV capsids will serve as valuable research tools, forming the basis for therapeutic solutions for both SC-related disorders or peripheral nervous system injury.

6.
Mol Ther Methods Clin Dev ; 32(2): 101232, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38558568

RESUMEN

Despite the availability of life-saving corticosteroids for 70 years, treatment for adrenal insufficiency is not able to recapitulate physiological diurnal cortisol secretion and results in numerous complications. Gene therapy is an attractive possibility for monogenic adrenocortical disorders such as congenital adrenal hyperplasia; however, requires further development of gene transfer/editing technologies and knowledge of the target progenitor cell populations. Vectors based on adeno-associated virus are the leading system for direct in vivo gene delivery but have limitations in targeting replicating cell populations such as in the adrenal cortex. One strategy to overcome this technological limitation is to deliver the relevant adrenocortical gene to a currently targetable organ outside of the adrenal cortex. To explore this possibility, we developed a vector encoding human 21-hydroxylase and directed expression to the liver in a mouse model of congenital adrenal hyperplasia. This extra-adrenal expression resulted in reconstitution of the steroidogenic pathway. Aldosterone and renin levels normalized, and corticosterone levels improved sufficiently to reduce adrenal hyperplasia. This strategy could provide an alternative treatment option for monogenic adrenal disorders, particularly for mineralocorticoid defects. These findings also demonstrate, when targeting the adrenal gland, that inadvertent liver transduction should be precluded as it may confound data interpretation.

7.
J Neuroinflammation ; 21(1): 77, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38539253

RESUMEN

Adiponectin (APN) is an adipokine which predominantly expresses in adipocytes with neuroprotective and anti-inflammatory effects. We have recently indicated that circulatory trimeric APN can enter the brain by crossing the blood-brain barrier (BBB) and modulate microglia-mediated neuroinflammation. Here, we found that the microglial NLR family pyrin domain containing 3 (NLRP3)-inflammasome activation was exacerbated in APN-/-5xFAD mice in age-dependent manner. The focus of this study was to develop a new and tractable therapeutic approach for treating Alzheimer's disease (AD)-related pathology in 5xFAD mice using peripheral APN gene therapy. We have generated and transduced adeno-associated virus (AAV2/8) expressing the mouse mutated APN gene (APNC39S) into the liver of 5xFAD mice that generated only low-molecular-weight trimeric APN (APNTri). Single dose of AAV2/8-APNC39S in the liver increased circulatory and cerebral APN levels indicating the overexpressed APNTri was able to cross the BBB. Overexpression of APNTri decreased both the soluble and fibrillar Aß in the brains of 5xFAD mice. AAV2/8-APNTri treatment reduced Aß-induced IL-1ß and IL-18 secretion by suppressing microglial NLRP3-inflammasome activation. The memory functions improved significantly in AAV-APNTri-treated 5xFAD mice with reduction of dystrophic neurites. These findings demonstrate that peripheral gene delivery to overexpress trimeric APN can be a potential therapy for AD.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/patología , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Adiponectina/genética , Adiponectina/farmacología , Microglía , Hígado/patología , Péptidos beta-Amiloides/farmacología
8.
Nat Commun ; 15(1): 1876, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485924

RESUMEN

Developing clinically predictive model systems for evaluating gene transfer and gene editing technologies has become increasingly important in the era of personalized medicine. Liver-directed gene therapies present a unique challenge due to the complexity of the human liver. In this work, we describe the application of whole human liver explants in an ex situ normothermic perfusion system to evaluate a set of fourteen natural and bioengineered adeno-associated viral (AAV) vectors directly in human liver, in the presence and absence of neutralizing human sera. Under non-neutralizing conditions, the recently developed AAV variants, AAV-SYD12 and AAV-LK03, emerged as the most functional variants in terms of cellular uptake and transgene expression. However, when assessed in the presence of human plasma containing anti-AAV neutralizing antibodies (NAbs), vectors of human origin, specifically those derived from AAV2/AAV3b, were extensively neutralized, whereas AAV8- derived variants performed efficiently. This study demonstrates the potential of using normothermic liver perfusion as a model for early-stage testing of liver-focused gene therapies. The results offer preliminary insights that could help inform the development of more effective translational strategies.


Asunto(s)
Dependovirus , Vectores Genéticos , Humanos , Vectores Genéticos/genética , Dependovirus/genética , Anticuerpos Neutralizantes , Hígado , Perfusión
9.
Mol Ther ; 32(3): 818-836, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38297833

RESUMEN

Directed evolution of natural AAV9 using peptide display libraries have been widely used in the search for an optimal recombinant AAV (rAAV) for transgene delivery across the blood-brain barrier (BBB) to the CNS following intravenous ( IV) injection. In this study, we used a different approach by creating a shuffled rAAV capsid library based on parental AAV serotypes 1 through 12. Following selection in mice, 3 novel variants closely related to AAV1, AAV-BBB6, AAV-BBB28, and AAV-BBB31, emerged as top candidates. In direct comparisons with AAV9, our novel variants demonstrated an over 270-fold improvement in CNS transduction and exhibited a clear bias toward neuronal cells. Intriguingly, our AAV-BBB variants relied on the LY6A cellular receptor for CNS entry, similar to AAV9 peptide variants AAV-PHP.eB and AAV.CAP-B10, despite the different bioengineering methods used and parental backgrounds. The variants also showed reduced transduction of both mouse liver and human primary hepatocytes in vivo. To increase clinical translatability, we enhanced the immune escape properties of our new variants by introducing additional modifications based on rational design. Overall, our study highlights the potential of AAV1-like vectors for efficient CNS transduction with reduced liver tropism, offering promising prospects for CNS gene therapies.


Asunto(s)
Barrera Hematoencefálica , Terapia Genética , Humanos , Animales , Ratones , Terapia Genética/métodos , Cápside , Hígado , Péptidos/genética , Dependovirus , Vectores Genéticos/genética , Transducción Genética
10.
J Inherit Metab Dis ; 47(1): 50-62, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37026568

RESUMEN

Urea cycle defects (UCDs) are severe inherited metabolic diseases with high unmet needs which present a permanent risk of hyperammonaemic decompensation and subsequent acute death or neurological sequelae, when treated with conventional dietetic and medical therapies. Liver transplantation is currently the only curative option, but has the potential to be supplanted by highly effective gene therapy interventions without the attendant need for life-long immunosuppression or limitations imposed by donor liver supply. Over the last three decades, pioneering genetic technologies have been explored to circumvent the consequences of UCDs, improve quality of life and long-term outcomes: adenoviral vectors, adeno-associated viral vectors, gene editing, genome integration and non-viral technology with messenger RNA. In this review, we present a summarised view of this historical path, which includes some seminal milestones of the gene therapy's epic. We provide an update about the state of the art of gene therapy technologies for UCDs and the current advantages and pitfalls driving future directions for research and development.


Asunto(s)
Trasplante de Hígado , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa , Trastornos Innatos del Ciclo de la Urea , Humanos , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/genética , Calidad de Vida , Urea/metabolismo , Donadores Vivos , Terapia Genética , Trastornos Innatos del Ciclo de la Urea/genética , Trastornos Innatos del Ciclo de la Urea/terapia , Trastornos Innatos del Ciclo de la Urea/complicaciones
11.
Mol Ther Methods Clin Dev ; 30: 459-473, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37674904

RESUMEN

Recombinant adeno-associated viruses (rAAVs) have emerged as one of the most promising gene therapy vectors that have been successfully used in pre-clinical models of heart disease. However, this has not translated well to humans due to species differences in rAAV transduction efficiency. As a result, the search for human cardiotropic capsids is a major contemporary challenge. We used a capsid-shuffled rAAV library to perform directed evolution in human iPSC-derived cardiomyocytes (hiPSC-CMs). Five candidates emerged, with four presenting high sequence identity to AAV6, while a fifth divergent variant was related to AAV3b. Functional analysis of the variants was performed in vitro using hiPSC-CMs, cardiac organoids, human cardiac slices, non-human primate and porcine cardiac slices, as well as mouse heart and liver in vivo. We showed that cell entry was not the best predictor of transgene expression efficiency. The novel variant rAAV.KK04 was the best-performing vector in human-based screening platforms, exceeding the benchmark rAAV6. None of the novel capsids demonstrate a significant transduction of liver in vivo. The range of experimental models used revealed the value of testing for tropism differences under the conditions of human specificity, bona fide, myocardium and cell type of interest.

12.
Heart Lung Circ ; 32(7): 816-824, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37451880

RESUMEN

Globally, adeno-associated virus (AAV) vectors have been increasingly used for clinical gene therapy trials. In Australia, AAV-based gene therapy is available for hereditary diseases such as retinal dystrophy or spinal muscular atrophy 1 (SMA1). Many preclinical studies have used AAV vectors for gene therapy in models of cardiac disease with outcomes of varying translational potential. However, major barriers to effective and safe therapeutic gene delivery to the human heart remain to be overcome. These include tropism, efficient gene transfer, mitigating off-target gene delivery and avoidance of the host immune response. Developing such an enhanced AAV vector for cardiac gene therapy is of great interest to the field of advanced cardiac therapeutics. In this review, we provide an overview of the approaches currently being employed in the search for cardiac cell-specific AAV capsids, ranging from natural AAVs selected as a result of infection and latency in the heart, to the use of cutting-edge molecular techniques to engineer and select AAVs specific for cardiac cells with the use of high-throughput methods.


Asunto(s)
Dependovirus , Técnicas de Transferencia de Gen , Tropismo Viral , Humanos , Dependovirus/fisiología , Vectores Genéticos
13.
Hum Gene Ther ; 34(17-18): 917-926, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37350098

RESUMEN

Realization of the immense therapeutic potential of epigenetic editing requires development of clinically predictive model systems that faithfully recapitulate relevant aspects of the target disease pathophysiology. In female patients with ornithine transcarbamylase (OTC) deficiency, an X-linked condition, skewed inactivation of the X chromosome carrying the wild-type OTC allele is associated with increased disease severity. The majority of affected female patients can be managed medically, but a proportion require liver transplantation. With rapid development of epigenetic editing technology, reactivation of silenced wild-type OTC alleles is becoming an increasingly plausible therapeutic approach. Toward this end, privileged access to explanted diseased livers from two affected female infants provided the opportunity to explore whether engraftment and expansion of dissociated patient-derived hepatocytes in the FRG mouse might produce a relevant model for evaluation of epigenetic interventions. Hepatocytes from both infants were successfully used to generate chimeric mouse-human livers, in which clusters of primary human hepatocytes were either OTC positive or negative by immunohistochemistry (IHC), consistent with clonal expansion from individual hepatocytes in which the mutant or wild-type OTC allele was inactivated, respectively. Enumeration of the proportion of OTC-positive or -negative human hepatocyte clusters was consistent with dramatic skewing in one infant and minimal to modest skewing in the other. Importantly, IHC and fluorescence-activated cell sorting analysis of intact and dissociated liver samples from both infants showed qualitatively similar patterns, confirming that the chimeric mouse-human liver model recapitulated the native state in each infant. Also of importance was the induction of a treatable metabolic phenotype, orotic aciduria, in mice, which correlated with the presence of clonally expanded OTC-negative primary human hepatocytes. We are currently using this unique model to explore CRISPR-dCas9-based epigenetic targeting strategies in combination with efficient adeno-associated virus (AAV) gene delivery to reactivate the silenced functional OTC gene on the inactive X chromosome.


Asunto(s)
Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa , Ornitina Carbamoiltransferasa , Lactante , Humanos , Ratones , Femenino , Animales , Ornitina Carbamoiltransferasa/genética , Inactivación del Cromosoma X/genética , Hepatocitos , Hígado , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/genética , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/terapia
14.
Mol Ther ; 31(7): 1979-1993, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37012705

RESUMEN

Success in the treatment of infants with spinal muscular atrophy (SMA) underscores the potential of vectors based on adeno-associated virus (AAV). However, a major obstacle to the full realization of this potential is pre-existing natural and therapy-induced anti-capsid humoral immunity. Structure-guided capsid engineering is one possible approach to surmounting this challenge but necessitates an understanding of capsid-antibody interactions at high molecular resolution. Currently, only mouse-derived monoclonal antibodies (mAbs) are available to structurally map these interactions, which presupposes that mouse and human-derived antibodies are functionally equivalent. In this study, we have characterized the polyclonal antibody responses of infants following AAV9-mediated gene therapy for SMA and recovered 35 anti-capsid mAbs from the abundance of switched-memory B (smB) cells present in these infants. For 21 of these mAbs, seven from each of three infants, we have undertaken functional and structural analysis measuring neutralization, affinities, and binding patterns by cryoelectron microscopy (cryo-EM). Four distinct patterns were observed akin to those reported for mouse-derived mAbs, but with early evidence of differing binding pattern preference and underlying molecular interactions. This is the first human and largest series of anti-capsid mAbs to have been comprehensively characterized and will prove to be powerful tools for basic discovery and applied purposes.


Asunto(s)
Anticuerpos Monoclonales , Cápside , Lactante , Humanos , Animales , Ratones , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales/genética , Microscopía por Crioelectrón , Cápside/química , Proteínas de la Cápside/química , Dependovirus , Terapia Genética , Vectores Genéticos/genética
15.
Heart Lung Circ ; 32(7): 769-779, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37012174

RESUMEN

The clinical outcome for children and adolescents with homozygous familial hypercholesterolaemia (HoFH) can be devastating, and treatment options are limited in the presence of a null variant. In HoFH, atherosclerotic risk accumulates from birth. Gene therapy is an appealing treatment option as restoration of low-density lipoprotein receptor (LDLR) gene function could provide a cure for HoFH. A clinical trial using a recombinant adeno-associated vector (rAAV) to deliver LDLR DNA to adult patients with HoFH was recently completed; results have not yet been reported. However, this treatment strategy may face challenges when translating to the paediatric population. The paediatric liver undergoes substantial growth which is significant as rAAV vector DNA persists primarily as episomes (extra-chromosomal DNA) and are not replicated during cell division. Therefore, rAAV-based gene addition treatment administered in childhood would likely only have a transient effect. With over 2,000 unique variants in LDLR, a goal of genomic editing-based therapy development would be to treat most (if not all) mutations with a single set of reagents. For a robust, durable effect, LDLR must be repaired in the genome of hepatocytes, which could be achieved using genomic editing technology such as clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 and a DNA repair strategy such as homology-independent targeted integration. This review discusses this issue in the context of the paediatric patient group with severe compound heterozygous or homozygous null variants which are associated with aggressive early-onset atherosclerosis and myocardial infarction, together with the important pre-clinical studies that use genomic editing strategies to treat HoFH in place of apheresis and liver transplantation.


Asunto(s)
Aterosclerosis , Hipercolesterolemia Familiar Homocigótica , Hiperlipoproteinemia Tipo II , Adulto , Adolescente , Humanos , Niño , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/terapia , Hiperlipoproteinemia Tipo II/epidemiología , Terapia Genética/métodos , Fenotipo , Mutación , Aterosclerosis/genética
16.
Hum Gene Ther ; 34(7-8): 273-288, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36927149

RESUMEN

The liver is a prime target for in vivo gene therapies using recombinant adeno-associated viral vectors. Multiple clinical trials have been undertaken for this target in the past 15 years; however, we are still to see market approval of the first liver-targeted adeno-associated virus (AAV)-based gene therapy. Inefficient expression of the therapeutic transgene, vector-induced liver toxicity and capsid, and/or transgene-mediated immune responses reported at high vector doses are the main challenges to date. One of the contributing factors to the insufficient clinical outcomes, despite highly encouraging preclinical data, is the lack of robust, biologically and clinically predictive preclinical models. To this end, this study reports findings of a functional evaluation of 6 AAV vectors in 12 preclinical models of the human liver, with the aim to uncover which combination of models is the most relevant for the identification of AAV capsid variant for safe and efficient transgene delivery to primary human hepatocytes. The results, generated by studies in models ranging from immortalized cells, iPSC-derived and primary hepatocytes, and primary human hepatic organoids to in vivo models, increased our understanding of the strengths and weaknesses of each system. This should allow the development of novel gene therapies targeting the human liver.


Asunto(s)
Dependovirus , Hígado , Humanos , Dependovirus/genética , Hígado/metabolismo , Terapia Genética/métodos , Hepatocitos/metabolismo , Proteínas de la Cápside/metabolismo , Tropismo , Vectores Genéticos/genética
17.
J Clin Endocrinol Metab ; 108(6): 1273-1289, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-36611246

RESUMEN

Primary adrenal insufficiency (PAI) occurs in 1 in 5 to 7000 adults. Leading etiologies are autoimmune adrenalitis in adults and congenital adrenal hyperplasia (CAH) in children. Oral replacement of cortisol is lifesaving, but poor quality of life, repeated adrenal crises, and dosing uncertainty related to lack of a validated biomarker for glucocorticoid sufficiency persists. Adrenocortical cell therapy and gene therapy may obviate many of the shortcomings of adrenal hormone replacement. Physiological cortisol secretion regulated by pituitary adrenocorticotropin could be achieved through allogeneic adrenocortical cell transplantation, production of adrenal-like steroidogenic cells from either stem cells or lineage conversion of differentiated cells, or for CAH, gene therapy to replace or repair a defective gene. The adrenal cortex is a high-turnover organ and thus failure to incorporate progenitor cells within a transplant will ultimately result in graft exhaustion. Identification of adrenocortical progenitor cells is equally important in gene therapy, for which new genetic material must be specifically integrated into the genome of progenitors to ensure a durable effect. Delivery of gene-editing machinery and a donor template, allowing targeted correction of the 21-hydroxylase gene, has the potential to achieve this. This review describes advances in adrenal cell transplants and gene therapy that may allow physiological cortisol production for children and adults with PAI.


Asunto(s)
Hiperplasia Suprarrenal Congénita , Insuficiencia Suprarrenal , Niño , Adulto , Humanos , Hidrocortisona , Calidad de Vida , Insuficiencia Suprarrenal/genética , Insuficiencia Suprarrenal/terapia , Insuficiencia Suprarrenal/complicaciones , Hiperplasia Suprarrenal Congénita/genética , Terapia Genética/efectos adversos , Trasplante de Células/efectos adversos
18.
Mol Ther Methods Clin Dev ; 28: 220-237, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36700121

RESUMEN

Recent clinical successes have intensified interest in using adeno-associated virus (AAV) vectors for therapeutic gene delivery. The liver is a key clinical target, given its critical physiological functions and involvement in a wide range of genetic diseases. In the present study, we first investigated the validity of a liver xenograft mouse model repopulated with primary hepatocytes using single-nucleus RNA sequencing (sn-RNA-seq) by studying the transcriptomic profile of human hepatocytes pre- and post-engraftment. Complementary immunofluorescence analyses performed in highly engrafted animals confirmed that the human hepatocytes organize and present appropriate patterns of zone-dependent enzyme expression in this model. Next, we tested a set of rationally designed HSPG de-targeted AAV-LK03 variants for relative transduction performance in human hepatocytes. We used immunofluorescence, next-generation sequencing, and single-nucleus transcriptomics data from highly engrafted FRG mice to demonstrate that the optimally HSPG de-targeted AAV-LK03 displayed a significantly improved lobular transduction profile in this model.

19.
Mol Ther Methods Clin Dev ; 27: 352-367, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36381301

RESUMEN

Hydrodynamic tail vein injection (HTV) is the "gold standard" for delivering naked DNA vectors to mouse liver, thereby transfecting predominately perivenous hepatocytes. While HTV corrects metabolic liver defects such as phenylketonuria or cystathionine ß-synthase deficiency, correction of spf ash mice with ornithine transcarbamylase (OTC) deficiency was not possible despite overexpression in the liver, as the OTC enzyme is primarily expressed in periportal hepatocytes. To target periportal hepatocytes, we established hydrodynamic retrograde intrabiliary injection (HRII) in mice and optimized minicircle (MC) vector delivery using luciferase as a marker gene. HRII resulted in a transfection efficiency below 1%, 100-fold lower than HTV. While HRII induced minimal liver toxicity compared with HTV, overexpression of luciferase by both methods, but not of a natural liver-specific enzyme, elicited an immune response that led to the elimination of luciferase expression. Further testing of MC vectors delivered via HRII in spf ash mice did not result in sufficient therapeutic efficacy and needs further optimization and/or selection of the corrected cells. This study reveals that luciferase expression is toxic for the liver. Furthermore, physical delivery of MC vectors via the bile duct has the potential to treat defects restricted to periportal hepatocytes, which opens new doors for non-viral liver-directed gene therapy.

20.
Viruses ; 14(8)2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35893689

RESUMEN

Gene therapy is making significant impact on a modest, yet growing, number of human diseases. Justifiably, the preferred viral vector for clinical use is that based on recombinant adeno-associated virus (rAAV). There is a need to scale up rAAV vector production with the transition from pre-clinical models to human application. Standard production methods based on the adherent cell type (HEK293) are limited in scalability and other methods, such as those based on the baculovirus and non-adherent insect cell (Sf9) system, have been pursued as an alternative to increase rAAV production. In this study, we compare these two production methods for cardiotropic rAAVs. Transduction efficiency for both production methods was assessed in primary cardiomyocytes, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), and in mice following systemic delivery. We found that the rAAV produced by the traditional HEK293 method out-performed vector produced using the baculovirus/Sf9 system in vitro and in vivo. This finding provides a potential caveat for vector function when using the baculovirus/Sf9 production system and underscores the need for thorough assessment of vector performance when using diverse rAAV production methods.


Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Baculoviridae/genética , Dependovirus/genética , Vectores Genéticos/genética , Células HEK293 , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA