RESUMEN
BACKGROUND: Thiazoles and 1,3,4-thiadiazoles have been reported to possess various pharmacological activities. RESULTS: A novel series of thiazoles carrying 1,3,4-thiadiazole core were designed and prepared via the reaction of the 2-(4-methyl-2-phenylthiazole-5-carbonyl)-N-phenylhydrazinecarbo-thioamide with the appropriate hydrazonoyl chlorides. The structures of the newly synthesized compounds were confirmed based on elemental and spectral analysis as well as their alternative syntheses. The cytotoxic potency of the newly synthesized thiadiazoles was evaluated by their growth inhibitory potency in liver HepG2 cancer cell line. Also, the structure activity relationship was studied. CONCLUSIONS: All the newly synthesized compounds were evaluated for their anticancer activity against liver carcinoma cell line (HepG2) using MTT assay. The results revealed that the compounds 12d, 12c, 6g, 18b, 6c, and 6f (IC50 = 0.82, 0.91, 1.06, 1.25, 1.29 and 1.88 µM, respectively) had good antitumor activity against liver carcinoma cell line (HepG2) when compared with the standard drug Doxorubicin (IC50 = 0.72 µM). Graphical abstract A facile synthesis and anticancer activity of some novel thiazoles carrying 1,3,4-thiadiazole moiety.
RESUMEN
Diazocoupling reaction of curcumin with different diazonium salts of p-toluidine, 2-aminopyridine, and 4-aminoantipyrine in pyridine yielded the arylhydrazones 2a-c. Arylhydrazone of p-toluidine reacted with urea, thiourea, and guanidine nitrate to produce 5,6-dihydropyrimidines. Further reaction of 2a with 2,3-diaminopyrdine in sodium ethoxide solution yielded 1H-pyrido[2,3-b][1,4]diazepine derivative. Bis(2,5-dihydroisoxazole) is obtained from the reaction of 2a with hydroxylamine hydrochloride, while its reactions with hydrazines afforded the respective 4,5-dihydro-1H-pyrazoles. The target compounds were evaluated as antioxidant and antibacterial agents. The tested compounds showed good to moderate activities compared to ascorbic acid and chloramphenicol, respectively.