Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Heliyon ; 10(14): e34769, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39130447

RESUMEN

Background: Streptococcus pyogenes is one of the major public health concerns causing human infections ranging from skin and throat infections to acute rheumatic fever and post streptococcal glomerulonephritis. Moreover, nowadays drug-resistant strains of S. pyogenes are emerging and can be transmitted through apparently healthy carriers to susceptible individuals. Objective: To assess the prevalence, antimicrobial susceptibility pattern and associated factors S. pyogenes among apparently healthy school children in Mekelle city primary schools, Northern Ethiopia. Methods: A cross-sectional study was conducted among 504 apparently healthy school children from February to May 2018. We used structured questionnaire to collect socio-demographic data. Throat specimens were collected using sterile cotton Swab and transported for culture, antimicrobial susceptibility and identification of S. pyogenes according to standard operating procedures. Data were analyzed using Stata 13 for descriptive statistics, bivariate and multivariate logistic regression. P-value <0.05 was declared statistically significance. Results: The mean age of the study participants was 11.5 years of which 55 % of them were females. The overall prevalence of S. pyogenes was 8.3 %. Being female, having low monthly income, weak personal hygiene, poor hand washing habit and crowded living style were significantly associated with the occurrence of S. pyogenes. The isolates of S. pyogenes showed resistance to Penicillin (69.1 %), Amoxicillin-Clavulanic acid (62 %), Ampicillin (54.6 %), Ceftriaxone (47.6 %), Tetracycline (14.4 %), Cefoxitin (7.2 %). About 57.15 % isolates were multidrug-resistant. Conclusions: This study revealed that some isolates of S. pyogenes among the apparently healthy school children were resistant to commonly prescribed antibiotic agents and associated with hygienic conditions and living style. Therefore, it is recommended to practice antimicrobial susceptibility test to maintain rational antibiotic use and improve hygienic and hand washing practices to decrease the likelihood of carriage rate.

2.
Int J Med Sci ; 21(10): 1915-1928, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113883

RESUMEN

Introduction: Lung cancer, characterized by uncontrolled cellular proliferation within the lung tissues, is the predominant cause of cancer-related fatalities worldwide. The traditional medicinal herb Piper longum has emerged as a significant contender in oncological research because of its documented anticancer attributes, suggesting its potential for novel therapeutic development. Methods: This study adopted network pharmacology and omics methodology to elucidate the anti-lung cancer potential of P. longum by identifying its bioactive constituents and their corresponding molecular targets. Results: Through a comprehensive literature review and the Integrated Medicinal Plant Phytochemistry and Therapeutics database (IMPPAT), we identified 33 bioactive molecules from P. longum. Subsequent analyses employing tools such as SwissTargetPrediction, SuperPred, and DIGEP-Pred facilitated the isolation of 676 potential targets, among which 72 intersected with 666 lung cancer-associated genetic markers identified through databases including the Therapeutic Target Database (TTD), Online Mendelian Inheritance in Man (OMIM), and GeneCards. Further validation through protein-protein interaction (PPI) networks, gene ontology, pathway analyses, boxplots, and overall survival metrics underscored the therapeutic potential of compounds such as 7-epi-eudesm-4(15)-ene-1ß, demethoxypiplartine, methyl 3,4,5-trimethoxycinnamate, 6-alpha-diol, and aristolodione. Notably, our findings reaffirm the relevance of lung cancer genes, such as CTNNB1, STAT3, HIF1A, HSP90AA1, and ERBB2, integral to various cellular processes and pivotal in cancer genesis and advancement. Molecular docking assessments revealed pronounced affinity between 6-alpha-diol and HIF1A, underscoring their potential as therapeutic agents for lung cancer. Conclusion: This study not only highlights the bioactive compounds of P. longum but also reinforces the molecular underpinnings of its anticancer mechanism, paving the way for future lung cancer therapeutics.


Asunto(s)
Neoplasias Pulmonares , Simulación del Acoplamiento Molecular , Farmacología en Red , Piper , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Piper/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Antineoplásicos Fitogénicos/química , Mapas de Interacción de Proteínas/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Fitoquímicos/química , Plantas Medicinales/química
3.
J Environ Manage ; 366: 121728, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38991334

RESUMEN

This study develops environmentally benign capping technique to synthesize nanoparticles of Curcuma longa-coated titanium dioxide (CR-TiO2) from titanium isopropoxide by utilizing the extract of Rosa rubiginosa flowers as reducing and chelating agent. The biogenically synthesized nanoparticles revealed excellent anti-bacterial, electrochemical, and photocatalytic properties due to the presence of porous TiO2 nanostructures. The sharp peaks by XRD pattern showed the crystallinity and phase purity of TiO2 nanoparticles. BET analysis proved mesoporous nature of the materials with specific surface area of 134 m2 g -1. The vibrational spectra suggest hydroxyl groups from flavonoids of Curcuma longa acting as functionalizing agent for TiO2 nanoporous structures with visible luminescence, which is proven in fluorescence spectra and is applicable for photocatalytic studies. The anti-bacterial studies showed good inference on TiO2 nanoparticles against Pseudomonas auruginosa and proved it to be an excellent antipseudomonal agent with the oxidative potential. The maximum degradation of phenol red dye in the presence of TiO2 under visible light conditions was observed. The supercapacitor fabricated using the biogenic TiO2 three-electrode system exhibited a specific capacitance of 128 Fg-1 (10 mV s-1), suggesting it as an excellent electrode material. The LSV curve at 50 mV s-1 scan rate showed that oxygen reduction potential (ORR) of CR-TiO2 electrodes was 121 mV. The present study is a new application of nanoparticles in sustainability consideration of the environment as well as a solution to the power crisis with fewer limitations. The well-distinguished antidiabetic and BSA denaturation potential suggests that these porous TiO2 nanostructures can be useful for drug delivery as glucose inhibitors and oral anti-inflammatory drugs with the restriction of adverse side effects.


Asunto(s)
Antibacterianos , Nanoestructuras , Titanio , Titanio/química , Antibacterianos/química , Antibacterianos/farmacología , Nanoestructuras/química , Catálisis , Porosidad
4.
Int J Med Sci ; 21(6): 1016-1026, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774755

RESUMEN

Introduction: Breast cancer results from tissue degradation caused by environmental and genetic factors that affect cells in the body. Matrix metalloproteinases, such as MMP-2 and MMP-9, are considered potential putative markers for tumor diagnosis in clinical validation due to their easy detection in body fluids. In addition, recent reports have suggested multiple roles for MMPs, rather than simply degeneration of the extracellular matrix, which comprises mobilizing growth factors and processing surface molecules. Methods: In this study, the chemotherapeutic effects of anthraquinone (AQ) extracted from edible mushrooms (Pleurotus ostreatus Jacq. ex Fr.) cells was examined in MCF-7 breast cancer cells. The cytotoxic potential and oxidative stress induced by purified anthraquinone were assessed in MCF-7 cells using MTT and ROS estimation assays. Gelatin Zymography, and DNA fragmentation assays were performed to examine MMP expression and apoptotic induction in the MCF-7 cells treated with AQ. The genes crucial for mutations were examined, and the mutated RNA knockout plausibility was analyzed using the CRISPR spcas9 genome editing software. Results: MCF-7 cells were attenuated in a concentration-dependent manner by the administration of AQ purified from P. ostreatus compared with the standard anticancer drug paclitaxel. AQ supplementation decreased oxidative stress and mitochondrial impairment in MCF-7 cells. Treatment with AQ and AQ with paclitaxel consistently decreased the expression of crucial marker genes such as MMP2 and MMP9. The mutated genes MMP2, MMP7, and MMP9 were assessed and observed to reveal four putative gene knockdown potentials for breast cancer treatment. Conclusions: The synergistic application of AQ and paclitaxel exerted a strong inhibitory effect on the MCF-7 breast cancer cells. Extensive studies are imperative to better understand the action of bioactive mixes on the edible oyster fungus P. ostreatus. The gene knockout potential detected by CRISPR SpCas9 will aid in elite research into anticancer treatments.


Asunto(s)
Antraquinonas , Apoptosis , Neoplasias de la Mama , Metaloproteinasa 2 de la Matriz , Metaloproteinasa 9 de la Matriz , Pleurotus , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Antraquinonas/farmacología , Células MCF-7 , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Femenino , Apoptosis/efectos de los fármacos , Apoptosis/genética , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Pleurotus/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
5.
Heliyon ; 10(7): e28204, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38571635

RESUMEN

This study introduces a series of novel Alkyl thio-1,2,4-triazole (4a-p) and mercapto-1,2,4-triazole (3a-d) compounds derived from nalidixic acid. The synthesis was streamlined, involving interactions between nalidixic acid hydrazide and various isothiocyanates to yield cyclic and alkyl(aryl) sulfide compounds, characterized using 1H NMR, 13C NMR, IR, and elemental analysis. Antioxidant capabilities were quantified through DPPH and ABTS assays, highlighting significant potential, especially for compound 3d, which demonstrated an ABTS IC50 value of 0.397 µM, on par with ascorbic acid (IC50 = 0.87 µM). Antibacterial efficacy was established through MIC assessments against a broad spectrum of Gram-positive and Gram-negative bacteria, including Candida albicans. Compounds 3b, 4e, 4h, 4j, 4i, 4m, and 4o showed broad-spectrum activity, with 4k and 4m exhibiting pronounced potency against E. coli. Molecular docking studies validated the antibacterial potential, with compounds 4f and 4h showing high binding affinities (docking scores of -9.8 and -9.6 kcal/mol, respectively), indicating robust interactions with the bacterial enzyme targets. These scores underscore the compounds' mechanistic basis for their antibacterial action and support their therapeutic promise. Furthermore, compounds 3b, 4i, and 4m, identified through drug-likeness and toxicity predictions, were highlighted for their favorable profiles, suggesting their suitability for oral antibiotic therapies. This comprehensive study, blending synthetic, in vitro, and in silico approaches, emphasizes the triazole derivatives' potential as future candidates for antibiotic and antioxidant applications, particularly spotlighting compounds 3b, 4i, and 4m due to their promising efficacy and safety profiles.

6.
Saudi Pharm J ; 32(5): 102052, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38590610

RESUMEN

The objective of this study was to explore a novel methodology for the synthesis of nanocoated probiotics following their collection and cultivation under optimized conditions, in light of their significant contribution to human health. Probiotics are instrumental in sustaining immune health by modulating the gastrointestinal microbiota and facilitating digestion. However, the equilibrium they maintain can be adversely affected by antibiotic treatments. It is critical to investigate the vulnerability of probiotics to antibiotics, considering the potential implications. This research aimed to assess whether nanoparticle coating could augment the probiotics' resistance to antibiotic influence. A strain of Lactococcus lactis (L. lactis) was isolated, cultured, and comprehensively characterized utilizing state-of-the-art methodologies, including the VITEK® 2 compact system, VITEK® MS, and 16S rRNA gene sequencing. The nanoparticle coating was performed using iron (III) chloride hexahydrate and tannic acid, followed by an evaluation of the probiotics' resistance to a range of antibiotics. The analysis through scanning electron microscopy (SEM) and atomic force microscopy (AFM) demonstrated a partial nanoparticle coating of the probiotics, which was further supported by UV/Vis spectroscopy findings, suggesting enhanced resistance to standard antibiotics. The results revealed that this strain possesses a unique protein profile and is genetically similar to strains identified in various other countries. Moreover, nano-encapsulation notably increased the strain's resistance to a spectrum of standard antibiotics, including Benzylpenicillin, Teicoplanin, Oxacillin, Vancomycin, Tetracycline, Rifampicin, Erythromycin, and Clindamycin. These findings imply that nanoparticle-coated probiotics may effectively counteract the detrimental effects of extended antibiotic therapy, thus preserving their viability and beneficial influence on gastrointestinal health.

7.
Vet Parasitol Reg Stud Reports ; 49: 100997, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38462302

RESUMEN

Diseases transmitted by vectors have a significant collision on society and community health, particularly in tropical and subtropical regions, where they can cause large-scale outbreaks shortly after initial transmission. The intent of this investigation was to study the plant extract derived from Sigesbeckia orientalis L. in controlling the immature stages of Anopheles, Culex and Aedes mosquitoes, while also considering its potential toxicity to ecosystems. The immature stages were exposed to different extracts (62.5-500 ppm), and the mortality of larvae and pupae, as well as ovicidal activity, were noted after 24 and 120 h of the experiment. The hexane and ethyl aceate extract of S. orientalis presented 100% ovicidal activity against the eggs of Anopheles, Aedes and Culex at 500 ppm concentration after 5 days of treatment. The hexane and ethylacetate extracts presented strong larvicidal activity with LC50 values of 215.7, 332.0, 197.4 and 212.6, 694.9 and 201.7 ppm against treated mosquitoes at 24 h, respectively. The same extract also presented promising pupicidal activity. The LC50 values of hexane extract were 219.6, 353.6, 194.2 and LC50 values of ethyl acetate were 257.6, 387.8 and 259.07 ppm against early stage pupae of three vector mosquitoes, respectively. The extracts from S. orientalis had strong inhibitory activity against growth and development of mosquitoes. SI/PSF values showed that the extracts of S. orientalis did not harm Poecilia reticulata, Diplonychus indicus (Water bug), Gambusia affinis and dragon fly nymph at tested concentrations. Furthermore, examinations of histopathology and growth disruption revealed significant damage to the midgut cells in the treated larvae. The formulations utilizing hexane and ethyl acetate extracts exhibited potent activity without posing any toxicity towards non-target organisms. This study clearly indicated that hexane and ethylacetate extracts showed promising results against treated mosquitoes. The present study documents the first report of the extracts from S. orientalis and they can be further assessed to identify compounds for application purposes.


Asunto(s)
Acetatos , Aedes , Anopheles , Culex , Insecticidas , Animales , Hexanos/farmacología , Sigesbeckia , Ecosistema , Insecticidas/farmacología , Insecticidas/química , Mosquitos Vectores , Larva
8.
Int J Med Mushrooms ; 26(3): 41-53, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505902

RESUMEN

The worldwide scientific community is well aware that mosquitoes are the sole agents responsible for transmitting various dreadful diseases and critical illnesses caused by vector-borne pathogens. The primary objective of this current research was to evaluate the effectiveness of methanol extract from Tricholoma equestre mushroom in controlling the early life stages of Culex quinquefasciatus Say, Anopheles stephensi Liston, and Aedes aegypti (Linnaeus in Hasselquist) mosquitoes. The larvae, pupae and eggs of these mosquitoes were exposed to four different concentrations (62.5 to 500 ppm). After 120 h of treatment, the methanol extract of T. equestre exhibited ovicidal activity ranging from 66% to 80% against the eggs of the treated mosquitoes. It also demonstrated promising larvicidal and pupicidal activity with LC50 values of 216-300 and 230-309 ppm against the early life stages of all three mosquito species. Extensive toxicity studies revealed that the methanol extract from T. equestre had no harmful effects on non-target organisms. The suitability index (SI) or predator safety factor (PSF) indicated that the methanol extract did not harm Poecilia reticulata Peters 1859, (predatory fish), Gambusia affinis S. F. Baird & Girard 1853, dragonfly nymph and Diplonychus indicus Venkatesan & Rao 1871 (water-bug). Gas chromatography-mass spectrometry (GCMS) analysis identified key compounds, including 3-butenenitrile, 2-methyl-(25.319%); 1-butanol, 2-nitro-(18.87%) and oxalic acid, heptyl propyl ester (21.82%) which may be responsible for the observed activity. Furthermore, the formulation based on the methanol extract demonstrated similar effectiveness against all treated mosquitoes at the laboratory level and was found to be non-toxic to mosquito predators. This groundbreaking research represents the first confirmation that methanol extract from T. equestre could be effectively employed in preventing mosquito-borne diseases through mosquito population control programs.


Asunto(s)
Aedes , Agaricales , Anopheles , Culex , Insecticidas , Odonata , Animales , Metanol/farmacología , Mosquitos Vectores , Insecticidas/farmacología , Insecticidas/química , Extractos Vegetales/química , Larva , Hojas de la Planta/química
9.
Heliyon ; 10(5): e27051, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38444505

RESUMEN

The extracts of E. alte offer promising potential as renewable resources for various chemical derivative products aimed at addressing antibiotic resistance. These extracts exhibited significant activity against methicillin-resistant Staphylococcus aureus (MRSA), a strain known for its resistance to multiple antibiotics. The extracts were found to be effective against several common antibiotics, including Imipenem, Ampicillin, Penicillin G, Oxacillin, and Amoxicillin-clavulanate. GC-MS analysis revealed that the phytoconstituents of E. alte extracts, obtained using both methanol and ethyl acetate, consist of a diverse range of 83 and 160 phytocompounds, respectively. These organic compounds serve as important biochemical precursors for the synthesis of vitamins E and K1, and exhibit antioxidant, antimicrobial, and anti-inflammatory properties in both plants and microorganisms. Notable compounds identified include fatty acids (such as palmitic acid, dodecanoic acid, sebacic acid, pentadecanoic acid, myristic acid, stearic acid, behenic acid, and linoelaidic acid), phytosterols (Campesterol, ß-sitosterol, Stigmast-5-ene), sugars (D-fructose, Fructofuranans), terpenoids (Phytol, citronellol), and phenolic acids (Protocatechoic acid, shikimic acid). The antimicrobial activity of all E. alte extracts was found to be superior to that of mupirocin and ciprofloxacin, as observed in susceptibility testing against MRSA ATCC 43300 and other pathogenic bacteria and fungi. It is likely that the combined action of the antimicrobial components within the E. alte extract bypasses the mechanisms employed by MRSA to protect itself from antibiotics. Further experiments are needed to investigate the individual effects of each pure compound and their potential synergistic interactions, which may enhance their overall performance.

10.
Int J Med Sci ; 21(4): 593-600, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464834

RESUMEN

Introduction: Broccoli is a cruciferous vegetable that has been shown to have numerous potential therapeutic benefits because of its bioactive compounds. Methods: In this study, we compared the bioactive efficacy of cooked and uncooked (fresh) stems and florets of broccoli extracted with three different solvents: acetonitrile, methanol, and aqueous extracts. The extraction yield and antioxidant and antibacterial potential of different broccoli extracts were examined. Results: Fresh and boiled floret stem extracts increased the extraction yield. The extraction yields were higher for the methanol and acetonitrile extracts than for the aqueous extracts. The antioxidant efficacy of the different extracts was studied using ABTS, DPPH, and metal ion reduction assays. The acetonitrile and aqueous extracts exhibited higher antioxidant activities than the methanolic extracts in different antioxidant assays. In addition, increased antioxidant activity was observed in fresh florets and boiled broccoli stems. TPC and TFC contents were higher in the methanolic extracts than in the aqueous extracts. Similar to antioxidant activities, anti-inflammatory activities were found to be higher in the acetonitrile and aqueous extracts, particularly in boiled stems and fresh florets. Broccoli extracts have been shown to be active against Bacillus subtilis and moderately effective against Pseudomonas aeruginosa and Staphylococcus aureus. Conclusions: Acetonitrile and aqueous extraction of broccoli might be an ideal choice for extraction methods, which show increased extraction yield and antioxidant and anti-inflammatory potentials. Utilization of phytomolecules from natural sources is a promising alternative approach to synthetic drug development.


Asunto(s)
Brassica , Brassica/química , Antioxidantes/química , Metanol/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Agua , Acetonitrilos , Antiinflamatorios
11.
Microb Pathog ; 189: 106602, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38408546

RESUMEN

The current research was designed to investigate the antibacterial activity of probiotic bacteria mediated cadmium oxide nanoparticles (CdO NPs) on common fish pathogenic bacteria like Serratia marcescens, Aeromonas hydrophila, Vibrio harveyi, and V. parahaemolyticus. CdO NPs were synthesized using probiotic bacteria as follows: Lactobacillus species with different precursor of cadmium sulfate concentrations (5, 10, and 20 mM). The average crystalline sizes of the CdO NPs were determined based on the XRD patterns using the Debye-Scherrer equation for different precursor concentrations. Specifically, sizes of 40, 48, and 67 nm were found at concentrations of 5, 10, and 20 mM, respectively. The antibacterial efficacy of CdO NPs was estimated using a well diffusion assay, which demonstrated the best efficacy of 20 mM CdO NPs against all pathogens. AFM analysis of nanoparticle-treated and untreated biofilms was performed to further validate the antibacterial effect. Antibacterial activity of CdO nanoparticles synthesized at varying concentrations (5, 10, and 20 mM) against fish pathogens (S. marcescens, A. hydrophila, V. harveyi, and V. parahaemolyticus). The results indicated the highest inhibitory effect of 20 mM CdO NPs across all concentrations (30, 60, and 90 µg/mL), demonstrating significant inhibition against S. marcescens. These findings will contribute to the development of novel strategies for combating aquatic diseases and advancing aquaculture health management practices.


Asunto(s)
Compuestos de Cadmio , Nanopartículas del Metal , Nanopartículas , Animales , Óxidos/química , Nanopartículas/química , Antibacterianos/farmacología , Antibacterianos/química , Bacterias , Peces , Nanopartículas del Metal/química
12.
World J Microbiol Biotechnol ; 40(3): 96, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349591

RESUMEN

The preservation of drug stability in biological evidence during the processes of collection and storage poses a substantial obstacle to the progress of forensic investigations. In conjunction with other constituents, the microorganisms present in the samples play a vital role in this investigation. The present investigation employed the high-performance liquid chromatography (HPLC) technique to assess the stability of (1R,2 S)-(-)-2-methylamino-1-phenyl-1-propanol hydrochloride in plasma and urine samples that were inoculated with Escherichia coli. These samples were subjected to storage conditions of 37 °C for 48 h and - 20 °C for a duration of 6 months. Minimal inhibitory concentration (MIC) and Minimal bactericidal concentration (MBC) of MPPH against E. coli were determined using microdilution method. The stability of MPPH in plasma and urine samples inoculated with E. coli was investigated using HPLC method. The results showed the MIC and MBC of MPPH were 87.5 ± 25 ppm and 175 ± 50 ppm, respectively. While MPPH remained stable in plasma for 48 h at 37 °C, it showed a notable decrease of about 11% in stability when stored in urine for the same period and temperature. From the beginning of the first month, a decrease in the stability of the compound appeared in all samples that were stored at - 20 °C, and the decrease reached 7% for plasma samples and about 11% for urine samples. The decrease in the stability reached its peak in the sixth month, reaching more than 30% and 70% of plasma and urine samples preserved at - 20 °C. This work concluded that E. coli can negatively affect the stability of MPPH in plasma and urine samples. This may lead to incorrect conclusions regarding the analysis of biological samples in criminal cases.


Asunto(s)
1-Propanol , Escherichia coli , Cromatografía Líquida de Alta Presión , 2-Propanol , Pruebas de Sensibilidad Microbiana
13.
Exp Parasitol ; 258: 108709, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301765

RESUMEN

Mosquitoes stand out as the most perilous and impactful vectors on a global scale, transmitting a multitude of infectious diseases to both humans and other animals. The primary objective of the current research was to assess the effectiveness of EOs from Ocimum tenuiflorum L. and Ocimum americanum L. in controlling Anopheles stephensi Liston. Culex quinquefasciatus Say and Aedes aegypti L. mosquitoes. The larvae, pupae and eggs of the mosquitoes were exposed to four different concentrations (6.25-50 ppm). The tested EOs resulted in >99-100 % mortality at 120 h for the eggs of all examined mosquito species. It also showed robust larvicidal and pupicidal activity with LC50 and LC90 values of 17-39, 23-60 ppm and 46-220, and 73-412 ppm against Aedes, Culex and Anopheles mosquito species, respectively, at 24 h of treatment. The Suitability Index or Predator Safety Factor demonstrated that the EOs extracted from O. tenuiflorum L. and O. americanum L. did not cause harm to P. reticulata, D. indicus (water bug), G. affinis and nymph (dragonfly). GC-MS analysis identified the major probable constituents of the oil, including Phenol, 2-Methoxy-4-(1-Propenyl)- (28.29 %); 1-Methyl-3-(1'-Methylcyclopropyl) Cyclopentene (46.46 %); (E,E,E)-3,7,11,15-Tetramethylhexadeca-1,3,6,10,14-Pentaene (18.91 %) and 1,3-Isobenzofurandione, 3a,4,7,7a-Tetrahydro-4,7-Dimethyl (33.02 %). These constituents may play a significant role in the mosquitocidal activity of the oil. The same results were identified in the formulation prepared from the EOs. This marks the first report confirming the successful utilization of EOs derived from O. tenuiflorum L. and O. americanum L. in mosquito population control initiatives.


Asunto(s)
Aedes , Anopheles , Culex , Insecticidas , Ocimum , Odonata , Aceites Volátiles , Animales , Humanos , Aceites Volátiles/farmacología , Aceites Volátiles/análisis , Ocimum/química , Ocimum sanctum , Mosquitos Vectores , Insecticidas/análisis , Larva , Extractos Vegetales/química , Hojas de la Planta/química
14.
J Infect Public Health ; 17(3): 450-456, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38262082

RESUMEN

BACKGROUND: In recent years, new drugs for the treatment of various diseases, thereby the emergence of antimicrobial resistance tremendously increased because of the increased consumption rate of various drugs. However, the irrational use of antibiotics increases the microbial resistance along with that the frequency of mortality associated with infections is higher. Broad-spectrum antibiotics were effectively against various bacteria and the unrestricted application of antibiotics lead to the emergence of drug resistance. The present study was aimed to detect the antibacterial properties of lipopeptide novel drug producing Streptomyces parvulus. METHODS: A lipopeptide-producing S. parvulus was isolated from the soil sample. The inhibitory effect of lipopeptide was detected against Gram-positive and Gram-negative bacteria. Bactericidal activity and minimum inhibitory concentration (MIC) were assayed. The IC50 value was analysed against ovarian and human melanoma cell lines. The experimental mouse model was infected withKlebsiella pneumoniae and treated with lipopeptide and bactericidal activity was determined. RESULTS: The results indicated that the antibacterial activity of lipopeptide ranges from 13 ± 1 mm to 32 ± 2 mm against Gram-positive and Gram-negative strains. The lowest MIC value was noted as 1.5 ± 0.1 µg/mL against K. pneumoniae and the highest against E. aerogenes (7.5 ± 0.2 µg/mL). The IC50 value was considerably high for the ovarian cell lines and human melanoma cell lines (426 µg/mL and 503 µg/mL). At 25 µg/mL concentration of lipopeptide, only 16.4% inhibition was observed in the ovarian cell line whereas 20.2% inhibition was achieved at this concentration in the human melanoma cell line. Lipopeptide inhibited bacterial growth and was completely inhibited at a concentration of 20 µg/mL. Lipopeptide reduced bacterial load in experimental mice compared to control (p < 0.05). CONCLUSION: Lipopeptide activity and its non-toxic nature reveal that it may serve as a lead molecule in the development of a novel drug.


Asunto(s)
Infecciones Bacterianas , Melanoma , Streptomyces , Humanos , Animales , Ratones , Antibacterianos/química , Lipopéptidos/farmacología , Bacterias Grampositivas , Bacterias Gramnegativas , Biopelículas , Pruebas de Sensibilidad Microbiana
15.
Saudi Pharm J ; 31(12): 101880, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38075545

RESUMEN

Atherosclerosis is a complex condition that develops at varying rates in multiple configurations and blood vessels. The primary cause of morbidity and mortality worldwide, particularly in the industrialized nations, continues to be atherosclerosis. Ayurveda, Siddha, and Unani systems of medicine, among other traditional medical systems, utilize polyherbal compositions. The treatment of atherosclerosis has been improved with a novel multibotanical combination. In this study, we sought to formulate, characterize, and standardize a polyherbal formulation based on design of experiments (DoE), densitometric studies and to predict for antioxidant activity using molecular docking analysis based on LC- MS identified phytomarkers. In addition we have assessed its cell viability by MTT assay along with Ao/EtBr staining technique and intracellular ROS assay using THP-1 cell lines. Reported findings showed that the HPTLC based quantified components of selected multiherbals has the ability to treat for atherosclerosis. This document could be used to quickly authenticate the formulation as the method optimized was based on CCD design which shows desirability of 0.962 and 0.839. Cell based assays scientifically proves that the formulation was not toxic based on MTT assay along with AO/EtBr staining technique and has excellent antioxidant activities based on intracellular ROS assay using THP-1 cell lines. The observed findings would be crucial for future clinical aspects since the bioactive molecules contained in the extracts may have anticipated effects with other compounds and show a superior therapeutic potential. As a result, this study offers standardized and potentially therapeutic information about effective polyherbal formulation for atherosclerosis.

16.
Nanomaterials (Basel) ; 13(24)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38133025

RESUMEN

Selenium nanoparticles (Se NPs) have a number of unique properties that determine the use of the resulting nanomaterials in various fields. The focus of this paper is the stabilization of Se NPs with cetyltrimethylammonium chloride (CTAC). Se NPs were obtained by chemical reduction in an aqueous medium. The influence of the concentration of precursors and synthesis conditions on the size of Se NPs and the process of micelle formation was established. Transmission electron microscopy was used to study the morphology of Se NPs. The influence of the pH of the medium and the concentration of ions in the sol on the stability of Se micelles was studied. According to the results of this study, the concentration of positively charged ions has a greater effect on the particle size in the positive Se NPs sol than in the negative Se NPs sol. The potential antibacterial and fungicidal properties of the samples were studied on Escherichia coli, Micrococcus luteus and Mucor. Concentrations of Se NPs stabilized with CTAC with potential bactericidal and fungicidal effects were discovered. Considering the revealed potential antimicrobial activity, the synthesized Se NPs-CTAC molecular complex can be further studied and applied in the development of veterinary drugs, pharmaceuticals, and cosmetics.

17.
J Infect Public Health ; 16(11): 1821-1829, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37742446

RESUMEN

BACKGROUND: Small colony variants (SCVs) are biotypes of bacteria that have a size of approximately one-tenth or less of the wild types and has distinct characteristics comparing to the wild type strains. Clinical SCVs are usually associated with persistent infection and require a long-term treatment program with antibiotics. In Saudi Arabia, there are few studies about SCVs Escherichia coli for this reason, this study is aimed to investigate the ability of gentamicin to mutate E. coli ATCC 25922 to produce small SCVs and investigate the genotypes and phenotypes changes and stress tolerance comparing to clinical SCVs E. coli and normal clinical E. coli Isolated from blood samples. METHODS: In this investigation, four clinical blood samples were collected ted from patients and the cultivation and isolation were carried out in KFMC between December 2019 and February 2021. The identification of positive blood culture samples was done using phoenix MD. Non-SCV E. coli ATCC25922 were mutated to SCV using exposure to increasing gradual concentrations of gentamicin at 100-generation intervals. Biochemical features and susceptibility to standard antibiotics using automated Phoenix MD 50 and. The survival assays were done using several stresses including heat shock, low pH, high osmotic pressure, and oxidative pressure. Virulence genes screening included the detection of genes that encoded to α-haemolysin, CS12 fimbriae, F17-like fimbrial adhesion, P-related fimbriae, yersiniabactin siderophore system, P-fimbriae, aerobactin, iron-regulated genes using PCR and gel electrophoresis. RESULTS: The data from the mutating E. coli ATCC 25922 small colony test with gentamicin revealed that the first emergence of the multidrug resistance (MDR) SCV E. coli strain occurred at generation number 250, corresponding to a gentamicin concentration of 57 g/ml. Pathogenicity islands detection revealed that all tested E. coli strains have PAI IV 536 genes on their chromosomes furthermore, mutated SCV E. coli ATCC 25922 acquired PAII CFT073 and PAI IV 536. Survival tests showed no significant differences changes in tolerance of mutated SCVs comparing to parental strain. CONCLUSION: The present work concluded that gentamicin sub-MIC concentration gradual exposure can induce mutation responsible for SCV formation and evolving of MDR E. coli strains. The mutated SCVs evolved high-level aminoglycoside resistance for gentamicin and resistance to amikacin, it also developed resistance to 2 cephalosporin antibiotics cefuroxime, and cephalothin and a resistance to aztreonam.

18.
Environ Res ; 238(Pt 1): 117090, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37683791

RESUMEN

The present study is aimed to evaluate pesticidal activity and biocompatibility including ecotoxicity of functionalized silica nanoparticles that synthesized by simple, in vitro, green technology principles. Sol-gel method was adopted for the synthesis of silica nanoparticles and was functionalized by Aminopropyltriethoxysilane (APS), characterized and confirmed the uniform, monodispersive, highly stable particles with the size range of 10-200 nm. The synthesized Nano silica was screened against the developmental stages of Spodoptera litura. Pesticidal study revealed that the functionalized nanoparticles were effective against all the life stages of the insect by recording high mortality and the drastic reduction in the larval, pupae, adult emergence, and adult longevity stages. The ecotoxic effect of synthesized nano-silica was tested on soil parameters, growth parameters of Arachis hypogaea, and compatibility with Trichoderma viride. This study revealed there was no toxic effect on soil, growth parameters of Arachis hypogaea, and most significantly the growth of Trichoderma viride was not inhibited. A biocompatibility study was done by using Zebrafish and Rabbit model. The study divulges there was no toxic effect on all the developmental stages of the Embryo. Further, the nanoparticles did not exhibit any dermatotoxicological effect which confirmed no signs and symptoms of inflammation. Nano-silica emerges as a promising eco-friendly and non-toxic substitute for conventional insecticides. Its utilization has the potential to augment both environmental preservation and economic prosperity on a national scale. Furthermore, the integration of silica-based nanoparticles with biocidal agents demonstrates notable biocompatibility and the capacity to hinder bacterial adhesion.


Asunto(s)
Nanopartículas , Plaguicidas , Animales , Conejos , Dióxido de Silicio/toxicidad , Pez Cebra , Nanopartículas/toxicidad , Suelo
19.
Arch Microbiol ; 205(8): 282, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37432479

RESUMEN

In the present study, the individual cultures of Proteus mirabilis (P. mirabilis) and Klebsiella pneumoniae (K. pneumoniae) were treated with morphologically modified silver nanoparticles (Ag NPs) and were found to display zones of inhibition of ~ 8 mm, 16 mm, 20 mm, and 22 mm (P. mirabilis) and 6 mm, 14 mm, 20 mm, and 24 mm (K. pneumoniae) at concentrations of 25 µg/ml, 50 µg/mL, 75 µg/mL, and 100 µg/mL, respectively. In addition, turbidity tests were performed based on O. D. values, which exhibited 92% and 90% growth inhibitions at 100 µg/mL concentration for P. mirabilis and K. pneumoniae, respectively. Furthermore, the IC50 concentration of Ag NPs was established for A549 lung cancer cells and found to be at 500 µg/mL. Evidently, the morphological variation of Ag NPs treated A549 lung cancer cells was exhibited with differential morphology studied by phase-contrast microscopy. The results demonstrated that the synthesized Ag NPs was not only efficient against gram-positive bacteria but also against gram-negative bacteria and A549 cancer cells, suggesting that the potential of these biosynthesized Ag NPs is a future drug discovery source for inhibiting bacteria and cancer cells.


Asunto(s)
Neoplasias Pulmonares , Nanopartículas del Metal , Humanos , Plata/farmacología , Descubrimiento de Drogas , Klebsiella pneumoniae , Proteus mirabilis
20.
Antibiotics (Basel) ; 12(7)2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37508317

RESUMEN

Staphylococcus aureus in the blood of sickle cell disease (SCD) patients may result in a significant increase in morbidity and mortality. S. aureus strains contain various virulence characteristics, including the ability to create a variety of toxins and develop drug resistance. The current study sought to assess the prevalence of S. aureus in SCD patients and to identify the pathogen's virulence characteristics. Between 2017 and 2021, blood samples and data were collected at King Saud University Medical City (KSUMC) in Riyadh, Saudi Arabia. The Vitek system PCR and gene sequencing methods were used for identification, antibiotic resistance patterns, and genetic analysis. During the study period, 47 S. aureus blood isolates (methicillin-resistant S. aureus (MRSA) 41.6% and non-MRSA 58.4%) were isolated from 2406 SCD patients. The prevalence percentages of virulence genes (finbB, sdrC, sdrD, icaA, coa, nuc, hlg, hla, finbA, clfA, efb, pvl, agr, spa, seb, sea, sec, tst, and sed) among all the isolates from the SCD patients compared with non-SCD patients (control group) were as follows: (100% vs. 100%), (100% vs. 100%), (100% vs. 100%), (100% vs. 87.5%), (100% vs. 81.3%), (100% vs. 100%), (100% vs. 100%), (100% vs. 100%), (97.9% vs. 81.3%), (97.9% vs. 100%), (97.9% vs. 87.5%), (54.3% vs. 56.3%), (46.8% vs. 75%), (42.6% vs. 43.8%), (27.7% vs. 0%), (25.5% vs. 12.5%), (12.8% vs. 6.3%), (4.3% vs. 12.5%), and (4.3% vs. 0%). Regarding the resistance genes (plaZ, mecA, ermA, ermC, tetK, tetM, and ermB) of the S. aureus strains isolated from the SCD patients compared with non-SCD patients (control group), the prevalence percentages were as follows: (100% vs. 100%), (100% vs. 56.3%), (0% vs. 31.3%), (31.9% vs. 18.8%), (40.4% vs. 25%), (0% vs. 0%), and (0% vs. 0%). As for the antibiotic (ampicillin, penicillin, amoxicillin, cefazolin, imipenem, oxacillin, erythromycin, tetracycline, azithromycin, ciprofloxacin, moxifloxacin, and levofloxacin) resistance of the S. aureus strains isolated from the SCD patients compared with non-SCD patients (control group), the prevalence percentages were as follows: (100% vs. 100%), (97.9% vs. 100%), (72.3% vs. 25%), (68.1% vs. 37.5%), (68.1% vs. 25%), (66% vs. 25%), (36.2% vs. 18.8%), (23.4% vs. 12.5%), (19.1% vs. 12.5%), (17% vs. 12.5%), (14.9% vs. 25%), and (10.6% vs. 18.7%). This study concluded that several virulence genes were present in the S. aureus strains recovered from the SCD patients at KSUMC, with all the isolates containing the finbB, sdrC, sdrD, icaA, coa, nuc, hlg, and hla genes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA