Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 454
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Sci Total Environ ; 954: 175734, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39244048

RESUMEN

Wetlands are highly diverse and productive and are among the three most important natural ecosystems worldwide, among which coastal wetlands are particularly valuable because they have been shown to provide important functions for human populations. They provide a wide variety of ecological services and values that are critical to humans. Their value may increase with increased use or scarcity owing to human progress, such as agriculture and urbanization. The potential assessment for one coastal wetland habitat to be substituted by another landscape depends on analyzing complex microbial communities including fungi, bacteria, viruses, and protozoa common in different wetlands. Moreover, the number and quality of resources in coastal wetlands, including nutrients and energy sources, are also closely related to the size and variety of the microbial communities. In this review, we discussed types of wetlands, how human activities had altered the carbon cycle, how climate change affected wetland services and functions, and identified some ways to promote their conservation and restoration that provide a range of benefits, including carbon sequestration. Current data also indicated that the coastal ocean acted as a net sink for atmospheric carbon dioxide in a post-industrial age and continuous human pressure would make a major impact on the evolution the coastal ocean carbon budget in the future. Coastal wetland ecosystems contain diverse microbial communities, and their composition of microbial communities will tend to change rapidly in response to environmental changes, as can serve as significant markers for identifying these changes in the future.

2.
Biomed Chromatogr ; : e6004, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237855

RESUMEN

Thirteen flavanone racemates were successfully separated using a Chiralpak® IA column and isopropanol-hexane (50:50, v/v). The mobile phase flow rate and detection wavelength were 0.5 mL/min and 254 nm. The retention times values ranged from 5.50 and 56.45 min. The values of the retention, separation, and resolution factors ranged from 0.63 to 21.67, 1.12 to 2.45, and 0.13 to 11.94. The docking binding energies ranged from -6.2 to -8.2 kcal/mol, showing enthalpy-determined host-guest complex formation. The molecular docking results and the experimental data were agreed well. The results showed that S-enantiomers had stronger bindings with chiral selectors compared to R-enantiomers. Consequently, the R-enantiomers eluted first followed by S-enantiomers. The reported method is highly useful to determine the enantiomeric composition of the reported flavanone in any sample.

3.
Adv Exp Med Biol ; 1457: 1-31, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39283418

RESUMEN

Coronavirus disease 2019 (COVID-19) has affected not only individual lives but also the world and global systems, both natural and human-made. Besides millions of deaths and environmental challenges, the rapid spread of the infection and its very high socioeconomic impact have affected healthcare, economic status and wealth, and mental health across the globe. To better appreciate the pandemic's influence, multidisciplinary and interdisciplinary approaches are needed. In this chapter, world-leading scientists from different backgrounds share collectively their views about the pandemic's footprint and discuss challenges that face the international community.


Asunto(s)
COVID-19 , Salud Global , Pandemias , SARS-CoV-2 , COVID-19/epidemiología , Humanos , Pandemias/prevención & control
4.
J Clin Med ; 13(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39124838

RESUMEN

Background: Platelet-rich plasma (PRP) is widely used in various medical and surgical specialties for its regenerative properties, including aesthetics (facial rejuvenation, hair restoration, and skin tightening) and orthopedics (treatment of tendinitis and osteoarthritis). However, the inconsistent literature on PRP's efficacy and safety leads to critical knowledge gaps. This systematic review evaluates quality control measures in PRP preparation and application and explores the regulatory environment governing its clinical use. Methods: Following PRISMA guidelines, a comprehensive search was conducted across multiple databases, including PubMed, EMBASE, and Web of Science, for studies published from January 2020 to April 2024. The review included randomized controlled trials (RCTs) involving human participants undergoing PRP treatment for aesthetic or regenerative purposes. Key parameters such as the PRP preparation methods, platelet concentration, and quality control measures were analyzed. The study protocol was registered with PROSPERO (ID: CRD42024557669). Results: Out of 75 RCTs involving 5726 patients, the review identified significant variability in PRP preparation methods and application techniques, including differences in centrifugation protocols and platelet concentration levels. A new evidence-based scoring system, the William-Eqram Scoring System for PRP Quality Reporting (WESS-PQR), was proposed to address these inconsistencies. Correlation analysis revealed a strong positive correlation (r = 0.79) between proper temperature control during preparation and PRP efficacy. Initial platelet count assessment showed a moderate positive correlation (r = 0.57) with efficacy. Conclusions: Standardized PRP preparation protocols and robust regulatory frameworks are urgently needed to ensure the safety and efficacy of PRP treatments. The proposed WESS-PQR scoring system can serve as a valuable tool for clinicians and researchers, promoting consistency and reliability in PRP applications.

5.
Biometals ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127845

RESUMEN

Here, we report for the first time, green-synthesized selenium nanoparticles (SeNPs) using pharmacologically potent herb of Polygonum bistorta Linn. for multiple biomedical applications. In the study, a facile and an eco-friendly approach is utilized for synthesis of SeNPs using an aqueous roots extract of P. bistorta Linn. followed by extensive characterization via Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Energy Dispersive X-Ray (EDX) analysis. The XRD and FTIR data determine the phase composition and successful capping of plant extract onto the surface of NPs while SEM and TEM micrographic examination reveals the elliptical and spherical morphology of the particles with a mean size of 69 ± 23 nm. After comprehensive characterization, the NPs are investigated for antifungal, antibacterial, antileishmanial, antioxidant, and biocompatibility properties. The study reveals that Polygonum bistorta Linn. synthesized SeNPs exhibit significant antibacterial and antifungal activities with Staphylococcus aureus and Fusarium oxysporum inducing the highest zone of inhibition of 14 ± 1.0 mm and 20 ± 1.2 mm, respectively at the concentration of 40 mg/mL. The NPs are also found to have antiparasitic potential against promastigote and amastigote forms of Leishmania tropica. Furthermore, the NPs are discovered to have excellent potential in neutralizing harmful free radicals thus exhibiting considerable antioxidant potential. Most importantly, Polygonum bistorta Linn. synthesized SeNPs showed substantial compatibility against blood cells in vitro studies, which signifies the nontoxic nature of the NPs. The study thus concludes that medicinally important Polygonum bistorta Linn. roots can be utilized as an eco-friendly, sustainable, and green source for the synthesis of pharmacologically potent selenium nanoparticles.

6.
Eur J Paediatr Neurol ; 52: 76-81, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39151278

RESUMEN

BACKGROUND AND AIMS: Although aerobic exercises such as cycling and swimming are increasingly being recommended in Duchenne muscular dystrophy (DMD), their effect on gait and balance parameters is unclear. This study was aimed to investigate the effect of cycling training on balance and spatio-temporal gait parameters in children with DMD. METHODS: Ambulant children (age range: 6.17-11.33 years) were randomly divided into two groups: home-based exercise training applied in the control group (n = 12) while 12 weeks of supervised submaximal lower extremity cycling training in addition to home-based exercise training performed in the study group (n = 11). Gait and balance parameters were evaluated using the GAITRite electronic walkway system and the Bertec Balance Check Screener™, respectively. Assessments were applied before and after 12 weeks of training. RESULTS: The mean ages of the children in the study and control groups were 8.20 (SD:1.34) and 8.86 (SD:1.30) years, consecutively (p > 0.05). Considering the baseline values, the balance and spatio-temporal gait parameters of the children were similar except for the antero-posterior postural sway on the perturbed surface with eyes open (p > 0.05). There was a significant time x group interaction effect in favor of the study group for the antero-posterior postural sway of children on the normal surface with eyes open (F (1,58) = 12.62, p = 0.002). It was found that the antero-posterior postural sway on the normal surface with eyes open was improved in the study group within group comparison (F (1,10) = 8.50, p = 0.015). CONCLUSIONS: The study showed that both the cycling and the home-based exercise training groups may maintain gait and balance parameters during the study. Adding a cycling training to the rehabilitation program can also provide additional contribution to improve antero-posterior balance.


Asunto(s)
Terapia por Ejercicio , Marcha , Distrofia Muscular de Duchenne , Equilibrio Postural , Humanos , Distrofia Muscular de Duchenne/rehabilitación , Distrofia Muscular de Duchenne/fisiopatología , Niño , Equilibrio Postural/fisiología , Masculino , Terapia por Ejercicio/métodos , Marcha/fisiología , Femenino , Ciclismo/fisiología , Resultado del Tratamiento
7.
Proc Inst Mech Eng H ; 238(7): 774-792, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39045911

RESUMEN

When treating orthopaedic damage or illness and accidental fracture, bone grafting remains the gold standard of treatment. In cases where this approach does not seem achievable, bone tissue engineering can offer scaffolding as a substitute. Defective and fractured bone tissue is extracted and substituted with porous scaffold structures to aid in the process of tissue regeneration. 3D bioprinting has demonstrated enormous promise in recent years for producing scaffold structures with the necessary capabilities. In order to create composite biomaterial inks for 3D bioprinting, three different materials were combined such as silk fibroin, bone particles, and synthetic biopolymer poly (ε-caprolactone) (PCL). These biomaterials were used to fabricate the two composites scaffolds such as: silk fibroin + bovine bone (SFB) and silk fibroin + bovine bone + Polycaprolactone (SFBP). The biomechanical, structural, and biological elements of the manufactured composite scaffolds were characterized in order to determine their suitability as a possible biomaterial for the production of bone tissue. The in vitro bioactivity of the two composite scaffolds was assessed in the simulated body fluids, and the swelling and degradation characteristics of the two developed scaffolds were analyzed separately over time. The results showed that the mechanical durability of the composite scaffolds was enhanced by the bovine bone particles, up to a specific concentration in the silk fibroin matrix. Furthermore, the incorporation of bone particles improved the bioactive composite scaffolds' capacity to generate hydroxyapatite in vitro. The combined findings show that the two 3D printed bio-composites scaffolds have the required mechanical strength and may be applied to regeneration of bone tissue and restoration, since they resemble the characteristics of native bone.


Asunto(s)
Materiales Biocompatibles , Fibroínas , Ensayo de Materiales , Impresión Tridimensional , Andamios del Tejido , Fibroínas/química , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Bovinos , Andamios del Tejido/química , Huesos/cirugía , Fenómenos Mecánicos , Poliésteres/química , Pruebas Mecánicas , Prótesis e Implantes
8.
Adv Colloid Interface Sci ; 332: 103250, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39047647

RESUMEN

The pressing global issue of organic pollutants, particularly phenolic compounds derived primarily from industrial wastes, poses a significant threat to the environment. Although progress has been made in the development of low-cost materials for phenolic compound removal, their effectiveness remains limited. Thus, there is an urgent need for novel technologies to comprehensively address this issue. In this context, MXenes, known for their exceptional physicochemical properties, have emerged as highly promising candidates for the remediation of phenolic pollutants. This review aims to provide a comprehensive and critical evaluation of MXene-based technologies for the removal of phenolic pollutants, focusing on the following key aspects: (1) The classification and categorization of phenolic pollutants, highlighting their adverse environmental impacts, and emphasizing the crucial need for their removal. (2) An in-depth discussion on the synthesis methods and properties of MXene-based composites, emphasizing their suitability for environmental remediation. (3) A detailed analysis of MXene-based adsorption, catalysis, photocatalysis, and hybrid processes, showcasing current advancements in MXene modification and functionalization to enhance removal efficiency. (4) A thorough examination of the removal mechanisms and stability of MXene-based technologies, elucidating their operating conditions and stability in pollutant removal scenarios. (5) Finally, this review concludes by outlining future challenges and opportunities for MXene-based technologies in water treatment, facilitating their potential applications. This comprehensive review provides valuable insights and innovative ideas for the development of versatile MXene-based technologies tailored to combat water pollution effectively.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38996180

RESUMEN

A rare metabolic condition called alkaptonuria (AKU) is caused by a decrease in homogentisate 1,2 dioxygenase (HGO) activity due to a mutation in homogentisate dioxygenase (HGD) gene. Homogentisic acid is a byproduct of the catabolism of tyrosine and phenylalanine that darkens the urine and accumulates in connective tissues which causes an agonizing arthritis. Employing the use of deep learning artificial intelligence (AI) drug design, this study aims to alleviate the current toxicity of the AKU drugs currently in use, particularly nitisinone, by utilizing the natural flavanol kaempferol molecule as a 4-hydroxyphenylpyruvate dioxygenase inhibitor. Kaempferol was employed to generate three effective de novo drug candidates targeting the enzyme 4-hydroxyphenylpyruvate dioxygenase using an AI drug design tool. We present novel AIK formulations in the present study. The AIK's (Artificial Intelligence Kaempferol) examination of drug-likeliness among the three led to its choice as a possible target. The toxicity assessment research of AIK demonstrates that it is not only safer to use than other treatments, but also more efficient. The docking of the AIGT with 4-hydroxyphenylpyruvate dioxygenase, which revealed a binding affinity of around -9.099 kcal/mol, highlights the AIK's potential as a therapeutic candidate. An innovative approach to deal with challenging circumstances is thus presented in this study by new formulations kaempferol that have been meticulously designed by AI. The results of the in vitro tests must be confirmed in vivo, even though AI-designed AIK is effective and sufficiently safe as computed.

10.
Water Environ Res ; 96(7): e11070, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39005104

RESUMEN

Every year, the global production of plastic waste reaches a staggering 400 million metric tons (Mt), precipitating adverse consequences for the environment, food safety, and biodiversity as it degrades into microplastics (MPs). The multifaceted nature of MP pollution, coupled with its intricate physiological impacts, underscores the pressing need for comprehensive policies and legislative frameworks. Such measures, alongside advancements in technology, hold promise in averting ecological catastrophe in the oceans. Mandated legislation represents a pivotal step towards restoring oceanic health and securing the well-being of the planet. This work offers an overview of the policy hurdles, legislative initiatives, and prospective strategies for addressing global pollution due to MP. Additionally, this work explores innovative approaches that yield fresh insights into combating plastic pollution across various sectors. Emphasizing the importance of a global plastics treaty, the article underscores its potential to galvanize collaborative efforts in mitigating MP pollution's deleterious effects on marine ecosystems. Successful implementation of such a treaty could revolutionize the plastics economy, steering it towards a circular, less polluting model operating within planetary boundaries. Failure to act decisively risks exacerbating the scourge of MP pollution and its attendant repercussions on both humanity and the environment. Central to this endeavor are the formulation, content, and execution of the treaty itself, which demand careful consideration. While recognizing that a global plastics treaty is not a panacea, it serves as a mechanism for enhancing plastics governance and elevating global ambitions towards achieving zero plastic pollution by 2040. Adopting a life cycle approach to plastic management allows for a nuanced understanding of possible trade-offs between environmental impact and economic growth, guiding the selection of optimal solutions with socio-economic implications in mind. By embracing a comprehensive strategy that integrates legislative measures and technological innovations, we can substantially reduce the influx of marine plastic litter at its sources, safeguarding the oceans for future generations.


Asunto(s)
Microplásticos , Océanos y Mares , Microplásticos/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Plásticos
11.
BMC Plant Biol ; 24(1): 659, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38987675

RESUMEN

BACKGROUND: The potential of phytoremediation using garlic monoculture (MC) and intercropping (IC) system with perennial ryegrass to enhance the uptake of cadmium (Cd), chromium (Cr), and lead (Pb) were investigated. RESULTS: Positive correlations were found between MC and IC systems, with varying biomass. Production of perennial ryegrass was affected differently depending on the type of toxic metal present in the soil. Root growth inhibition was more affected than shoot growth inhibition. The total biomass of shoot and root in IC was higher than MC, increasing approximately 3.7 and 2.9 fold compared to MC, attributed to advantages in root IC crop systems. Photosystem II efficiency showed less sensitivity to metal toxicity compared to the control, with a decrease between 10.07-12.03%. Among gas exchange parameters, only Cr significantly affected physiological responses by reducing transpiration by 69.24%, likely due to leaf chlorosis and necrosis. CONCLUSION: This study exhibited the potential of garlic MC and IC with perennial ryegrass in phytoremediation. Although the different metals affect plant growth differently, IC showed advantages over MC in term biomass production.


Asunto(s)
Biodegradación Ambiental , Ajo , Lolium , Metales Pesados , Fotosíntesis , Lolium/crecimiento & desarrollo , Lolium/efectos de los fármacos , Lolium/fisiología , Lolium/metabolismo , Fotosíntesis/efectos de los fármacos , Metales Pesados/toxicidad , Ajo/crecimiento & desarrollo , Ajo/fisiología , Ajo/metabolismo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Biomasa , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Cadmio/toxicidad , Cadmio/metabolismo
12.
J Fungi (Basel) ; 10(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38921371

RESUMEN

Climate change and the resultant environmental deterioration signify one of the most challenging problems facing humankind in the 21st century. The origins of climate change are multifaceted and rooted in anthropogenic activities, resulting in increasing greenhouse gases in the environment and leading to global warming and weather drifts. Extremophilic fungi, characterized by their exceptional properties to survive extreme habitats, harbor great potential in mitigating climate change effects. This review provides insight into the potential applications of extremophilic fungi in climate change mitigation strategies. They are able to metabolize organic biomass and degrade carbon compounds, thereby safely sequestering carbon and extenuating its release into the environment as noxious greenhouse gases. Furthermore, they possess extremozymes, which break down recalcitrant organic species, including lignocellulosic biomass and hydrocarbons. Enzymatic machinery equips these extremophilic fungi to perform the bioremediation of polluted environments. Extremophilic fungi can also be exploited for various biological interventions, such as biofuels, bioplastics, and other bioprocessing applications. However, these fungi characterize a valued but underexplored resource in the arsenal of climate change mitigation strategies.

13.
ACS Omega ; 9(22): 23355-23363, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38854579

RESUMEN

An increase in cocaine abuse has been observed globally since the past decade. Cocaine is among the commonly abused stimulants used for recreational purposes. In this study, the SPE-UHPLC-MS/MS method was developed and validated to be applied on real specimens of 20 chronic cocaine abusers to quantify cocaine/metabolites in conventional as well as alternative biological matrices. Cocaine was extracted from biological specimens using solid-phase extraction followed by liquid chromatography tandem mass spectrometry analysis. Chromatographic separation was achieved on a Poroshell120EC-18 column (2.1 mm × 50 mm, 2.7 µm particle size) using water-acetonitrile in 0.1% formic acid as a mobile phase in gradient elution mode. The flow rate of the mobile phase was 0.5 mL/min with a gradient varying the percentage of acetonitrile linearity ranging 15-95% in 6.0 min acquisition time, and the injection volume was set at 5 µL. Positive electrospray ionization with multireaction ion monitoring mode using two ion transitions for cocaine/metabolites and one for cocaine-d3 was employed. The quantification method demonstrated good linear ranges of 0.025-250 ng/mL in blood, urine, and oral fluid (ng/mg for hair and nail) with a ≥0.991% determination coefficient. The detection limit and lower quantification limit were 0.005 and 0.025 ng/mL in all matrices, respectively. The mean extraction recovery and ionization suppression ranged from 89.3 to 99.8% and -4.6 to -14.4% in the studied matrices. Within-run and between-days precisions were 1.8-7.2% and 1.9-6.1%, respectively. This study will not only help in quantifying cocaine/metabolites in alternative specimens (hair, nail, and oral fluid) but also guide clinical and forensic toxicologists in interpretation of exhumation cases. Furthermore, multiple specimens' analyses can be of significance in estimating the time/manner of drug exposure, in confirming the results of laboratories in cases of doubtful clinical histories, or in aiding medico-legal investigations.

14.
Sensors (Basel) ; 24(11)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38894225

RESUMEN

The Internet of Things (IoT) is a growing network of interconnected devices used in transportation, finance, public services, healthcare, smart cities, surveillance, and agriculture. IoT devices are increasingly integrated into mobile assets like trains, cars, and airplanes. Among the IoT components, wearable sensors are expected to reach three billion by 2050, becoming more common in smart environments like buildings, campuses, and healthcare facilities. A notable IoT application is the smart campus for educational purposes. Timely notifications are essential in critical scenarios. IoT devices gather and relay important information in real time to individuals with special needs via mobile applications and connected devices, aiding health-monitoring and decision-making. Ensuring IoT connectivity with end users requires long-range communication, low power consumption, and cost-effectiveness. The LPWAN is a promising technology for meeting these needs, offering a low cost, long range, and minimal power use. Despite their potential, mobile IoT and LPWANs in healthcare, especially for emergency response systems, have not received adequate research attention. Our study evaluated an LPWAN-based emergency response system for visually impaired individuals on the Hazara University campus in Mansehra, Pakistan. Experiments showed that the LPWAN technology is reliable, with 98% reliability, and suitable for implementing emergency response systems in smart campus environments.


Asunto(s)
Internet de las Cosas , Humanos , Aplicaciones Móviles , Tecnología Inalámbrica
15.
Neurohospitalist ; 14(3): 288-290, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38895003

RESUMEN

Cerebral venous sinus thrombosis (CVST) is a rare and potentially fatal condition. It is believed to be one of the rare complications of lumbar puncture (LP), however other causes and risk factors should be considered and ruled out. Diagnosis can be challenging after an LP as it can mimic low pressure or post dural puncture. We present a 23-year-old patient diagnosed with CVST following a diagnostic lumbar puncture, in the absence of other risk factors. The patient presented with a persistent headache that was initially attributed to low CSF pressure, as well as a transient episode of right hemi-body paresthesia. Neuroimaging including contrasted MRI with venography confirmed the diagnosis. The patient had negative hypercoagulable evaluation and was placed on anticoagulation on discharge. Our report highlights the importance of considering CVST in refractory headaches after LP and the value of neuroimaging when indicated.

16.
Artículo en Inglés | MEDLINE | ID: mdl-38898802

RESUMEN

Bimetallic nanoparticles, particularly Ag/Zn bimetallic nanoparticles, have gained increasing attention due to their unique properties, making them suitable for a variety of applications such as catalysis, water treatment, and environmental remediation. This study aimed to elucidate the use of bimetallic nanoparticles of Ag/Zn as an alternative to resistant pesticides for pest control. Furthermore, this research demonstrates that BNPs can target specific pollutants and degrade them through various mechanisms. BNP docking with the Nilaparvata lugens cytochrome P450 (CYP6ER1) protein exhibited the lowest binding energy of -7.5 kcal/mol. The cell permeability analysis of BNP in plant cells reveals that the BNP has 0 % permeability towards any cell at -10 kcal/mol energy, which is the lowest free energy translocation pathway. The harmful leftover residues of the pesticides have a higher chance of degradability in case of interaction with BNP validated by chemical-chemical interaction analysis. Additionally, MDCK permeability coefficient of small molecules based on the regression model was calculated for BNP which authenticated the efficiency of BNP. Moreover, Swiss ADMET simulated absorption using a boiled egg model with no blood-brain barrier and gastrointestinal crossing for the expected BNP molecule has been observed. Significantly, the findings indicate that employing bimetallic nanoparticles like Ag/Zn is a crucial strategy for bioremediation because they proficiently decompose pesticides while posing no risk to humans. Our results will facilitate the design of novel BNPs materials for environmental remediation and pest control ensuring human health safety that are predicated on bimetallic nanoparticles.

17.
Nanomedicine ; 61: 102769, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38914247

RESUMEN

Many strategies for regenerating the damaged tissues or degenerating cells are employed in regenerative medicine. Stem cell technology is a modern strategy of the recent approaches, particularly the use of mesenchymal stem cells (MCSs). The ability of MSCs to differentiate as well as their characteristic behaviour as paracrine effector has established them as key elements in tissue repair (Shaer et al., 20141). Recently, extracellular vesicles (EVs) shed by MSCs have emerged as a promising cell free therapy (Citation}Rani, S., Ryan, A. E., Griffin, M. D., and Ritter, T., 20152). This comprehensive review encompasses MSCs-derived exosomes and their therapeutic potential as nanotherapeutics. We also discuss their potency as drug delivery nano-carriers in comparison with liposomes. A better knowledge of EVs behaviour in vivo and of their mechanism of action are key to determine parameters of an optimal formulation in pilot studies and to establish industrial processes.

18.
J Oral Rehabil ; 51(8): 1379-1389, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38661347

RESUMEN

BACKGROUND: Cervical posture affects swallowing function through contractile and non-contractile structures. Craniocervical flexor endurance training (CCFET), which focuses on the activation of deep cervical muscles, is used to ensure cervical posture stability. OBJECTIVE: The aim of this study was to investigate the effect of CCFET on the suprahyoid muscles (SH), which play an important role in swallowing function. METHODS: Eighty healthy individuals (52 female and 28 male, mean age 21.77 ± 1.81 years) were recruited and randomly assigned to groups that underwent either deep cervical flexor (DCF) training with a pressure biofeedback unit (CCFET group, n = 41) or no intervention (control group, n = 39). The intervention was applied for 4 weeks (five sessions per week). Static endurance and activation of DCF muscles (Craniocervical Flexion Test, CCFT), tragus-wall distance (TWD) for forward head posture and surface electromyographic (sEMG) activation of suprahyoid muscles were evaluated. RESULTS: The endurance and activation of the DCF muscles were significantly increased in the CCFET group (p = <.001). In the CCFET group, TWD significantly lower than the control group (p = <.001) Peak SH amplitude and mean SH amplitude were lower in the CCFET group compared to the control group (p = .013, p = .003). CONCLUSION: The study shows that 4 weeks of CCFET reduced SH muscle activation, allowing the same work to be done with fewer motor units. CCFET can be included in rehabilitation programs as an additional method that has an effect on the muscles involved in swallowing by providing cervical motor control.


Asunto(s)
Deglución , Electromiografía , Entrenamiento Aeróbico , Músculos del Cuello , Humanos , Masculino , Femenino , Músculos del Cuello/fisiología , Adulto Joven , Entrenamiento Aeróbico/métodos , Deglución/fisiología , Postura/fisiología , Voluntarios Sanos , Adulto , Contracción Muscular/fisiología , Biorretroalimentación Psicológica/fisiología , Biorretroalimentación Psicológica/métodos
19.
Z Naturforsch C J Biosci ; 79(7-8): 209-220, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38635803

RESUMEN

Pancreatic cancer is a fatal illness caused by mutations in multiple genes. Pancreatic cancer damages the organ that helps in digestion, resulting in symptoms including fatigue, bloating, and nausea. The use of medicinal plants has been crucial in the treatment of numerous disorders. The medicinal plant Calliandra Harrisi has been widely exploited for its possibilities in biology and medicine. The current study aimed to assess the biopotential of biologically active substances against pancreatic cancer. The GC-MS data of these phytochemicals from Calliandra Harrisi were further subjected to computational approaches with pancreatic cancer genes to evaluate their potential as therapeutic candidates. Molecular docking analysis revealed that N-[Carboxymethyl] maleamic acid is the leading molecule responsible for protein denaturation inhibition, having the highest binding affinity of 6.8 kJ/mol among all other compounds with KRAS inflammatory proteins. Furthermore, ADMET analysis and Lipinski's rule validation were also performed revealing its higher absorption in the gastrointestinal tract. The results of the hepatotoxicity test demonstrated that phytochemicals are non-toxic, safe to use, and do not cause necrosis, fibrosis, or vacuolar degeneration even at excessive levels. Calliandra Harrisi has phytoconstituents that have a variety of pharmacological uses in consideration.


Asunto(s)
Diseño de Fármacos , Cromatografía de Gases y Espectrometría de Masas , Simulación del Acoplamiento Molecular , Neoplasias Pancreáticas , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Humanos , Medicina de Precisión/métodos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Plantas Medicinales/química , Plantas Medicinales/genética , Simulación por Computador , Fitoquímicos/química , Fitoquímicos/farmacología
20.
Chemosphere ; 358: 142055, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641292

RESUMEN

The impact of desalination brine on the marine environment is a global concern. Regarding this, salinity is generally accepted as the major environmental factor in desalination concentrate. However, recent studies have shown that the influence of organic contaminants in brine cannot be ignored. Therefore, a non-targeted screening method based on comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry (GC × GC-qMS) was developed for identifying organic contaminants in the desalination brine. A total of 404 compounds were tentatively identified from four seawater desalination plants (three reverse osmosis plants and one multiple effect distillation plant) in China. The identified compounds were prioritized based on their persistence, bioaccumulation, ecotoxicity, usage, and detection frequency. Twenty-one (21) compounds (seven phthalates, ten pesticides, four trihalomethanes) were then selected for further quantitative analysis and ecological risk assessment, including compounds from the priority list along with substances from the same chemical classes. Ecologically risky substances in brine include diisobutylphthalate and bis(2-Ethylhexyl) phthalate, atrazine and acetochlor, and bromoform. Most of the contaminants come from raw seawater, and no high risk contaminants introduced by the desalination process have been found except for disinfection by-products. In brine discharge management, people believed that all pollution in raw seawater was concentrated by desalination process. This study shows that not all pollutants are concentrated during the desalination process. In this study, the total concentration of pesticide in the brine increased by 58.42%. The concentration of ∑PAEs decreased by 13.65% in reverse osmosis desalination plants and increased by 10.96% in the multi-effect distillation plant. The concentration of trihalomethane increased significantly in the desalination concentrate. The change in the concentration of pollutants in the desalination concentrate was related to the pretreatment method and the chemical characteristics of the contaminants. The method and results given in this study hinted a new idea to identify and control the environmental impact factors of brine.


Asunto(s)
Salinidad , Agua de Mar , Contaminantes Químicos del Agua , Purificación del Agua , Agua de Mar/química , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Purificación del Agua/métodos , China , Monitoreo del Ambiente/métodos , Plaguicidas/análisis , Cromatografía de Gases y Espectrometría de Masas , Sales (Química)/química , Ácidos Ftálicos/análisis , Trihalometanos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA