Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1444328, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239197

RESUMEN

Sclerotinia sclerotiorum (Lib.) de Bary is the causative agent of stem white mold disease which severely reduces major crop productivity including soybean and rapeseed worldwide. The current study aimed to explore plant growth-promoting traits and biocontrol of new isolated Bacillus subtilis BS-2301 to suppress S. sclerotiorum through various mechanisms. The results indicated that the BS-2301 exhibited strong biocontrol potential against S. sclerotiorum up to 74% both in dual culture and partition plate experiments. The BS-2301 and its crude extract significantly suppressed S. sclerotiorum growth involving excessive reactive oxygen species (ROS) production in mycelia for rapid death. Furthermore, the treated hyphae produced low oxalic acid (OA), a crucial pathogenicity factor of S. sclerotiorum. The SEM and TEM microscopy of S. sclerotiorum showed severe damage in terms of cell wall, cell membrane breakage, cytoplasm displacement, and organelles disintegration compared to control. The pathogenicity of S. sclerotiorum exposed to BS-2301 had less disease progression potential on soybean leaves in the detached leaf assay experiment. Remarkably, the strain also demonstrated broad-range antagonistic activity with 70%, and 68% inhibition rates against Phytophthora sojae and Fusarium oxysporum, respectively. Furthermore, the strain exhibits multiple plant growth-promoting and disease-prevention traits, including the production of indole-3-acetic acid (IAA), siderophores, amylases, cellulases and proteases as well as harboring calcium phosphate decomposition activity. In comparison to the control, the BS-2301 also showed great potential for enhancing soybean seedlings growth for different parameters, including shoot length 31.23%, root length 29.87%, total fresh weight 33.45%, and total dry weight 27.56%. The antioxidant enzymes like CAT, POD, SOD and APX under BS-2301 treatment were up-regulated in S. sclerotiorum infected plants along with the positive regulation of defense-related genes (PR1-2, PR10, PAL1, AOS, CHS, and PDF1.2). These findings demonstrate that the BS-2301 strain possesses a notable broad-spectrum biocontrol potential against different phytopathogens and provides new insight in suppressing S. sclerotiorum through various mechanisms. Therefore, BS-2301 will be helpful in the development of biofertilizers for sustainable agricultural practices.

2.
Front Microbiol ; 15: 1459112, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39234543

RESUMEN

Introduction: The ability to produce biosurfactants plays a meaningful role in the bioavailability of crude oil hydrocarbons and the bioremediation efficiency of crude oil-degrading bacteria. This study aimed to characterize the produced biosurfactants by Pseudomonas oryzihabitans during the biodegradation of crude oil hydrocarbons. Methods: The biosurfactants were isolated and then characterized by Fourier transform infrared (FTIR), liquid chromatography-mass-spectrometry (LC-MS), and nuclear magnetic resonance spectroscopy (NMR) analyses. Results: The FTIR results revealed the existence of hydroxyl, carboxyl, and methoxyl groups in the isolated biosurfactants. Also, the LC-MS analysis demonstrated a main di-rhamnolipid (l-rhamnopyranosyll-rhamnopyranosyl-3-hydroxydecanoyl-3-hydroxydecanoate, Rha-Rha-C10-C10) along with a mono-rhamnolipid (l-rhamnopyranosyl-b-hydroxydecanoylb-hydroxydecanoate, Rha-C10-C10). In agreement with these findings, the NMR analysis confirmed the aromatic, carboxylic, methyl, sulfate moieties, and hexose sugar in the biosurfactants. The emulsion capacity of the biosurfactants decreased the surface tension of the aqueous system from 73.4 mN m-1 to around 33 mN m-1 at 200 mg L-1 as the critical micelle concentration. The emulsification capacity of the biosurfactants in the formation of a stable microemulsion for the diesel-water system at a wide range of pH (2-12), temperature (0-80°C), and salinity (2-20 g L-1 of NaCl) showed their potential use in oil recovery and bioremediation through the use of microbial enhancement. Discussion: This work showed the ability of Pseudomonas oryzihabitans NC392 cells to produce rhamnolipid molecules during the biodegradation process of crude oil hydrocarbons. These biosurfactants have potential in bioremediation studies as eco-friendly and biodegradable products, and their stability makes them optimal for areas with extreme conditions.

3.
AMB Express ; 14(1): 99, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39249658

RESUMEN

Cystic fibrosis transmembrane conductance regulator (CFTR) protein is an ion channel found in numerous epithelia and controls the flow of water and salt across the epithelium. The aim of our study to find natural compounds that can improve lung function for people with cystic fibrosis (CF) caused by the p.Gly628Arg (rs397508316) mutation of CFTR protein. The sequence of CFTR protein as a target structure was retrieved from UniProt and PDB database. The ligands that included Armepavine, Osthole, Curcumin, Plumbagine, Quercetin, and one Trikafta (R*) reference drug were screened out from PubChem database. Autodock vina software carried out docking, and binding energies between the drug and the target were included using docking-score. The following tools examined binding energy, interaction, stability, toxicity, and visualize protein-ligand complexes. The compounds having binding energies of -6.4, -5.1, -6.6, -5.1, and - 6.5 kcal/mol for Armepavine, Osthole, Curcumin, Plumbagine, Quercetin, and R*-drug, respectively with mutated CFTR (Gly628Arg) structure were chosen as the most promising ligands. The ligands bind to the mutated CFTR protein structure active sites in hydrophobic bonds, hydrogen bonds, and electrostatic interactions. According to ADMET analyses, the ligands Armepavine and Quercetin also displayed good pharmacokinetic and toxicity characteristics. An MD simulation for 200 ns was also established to ensure that Armepavine and Quercetin ligands attached to the target protein favorably and dynamically, and that protein-ligand complex stability was maintained. It is concluded that Armepavine and Quercetin have stronger capacity to inhibit the effect of mutated CFTR protein through improved trafficking and restoration of original function.

4.
Sci Rep ; 14(1): 21813, 2024 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294226

RESUMEN

Rice (Oryza sativa) is a staple food for billions of people across the globe, that feeds nearly three-quarters of the human population on Earth, particularly in Asian countries. Rice yield has been drastically reduced and severely affected by various biotic and abiotic stresses, especially pathogens. Controlling the attack of such pathogens is a matter of immediate concern as yield losses in rice crops could deprive millions of lives of nourishment worldwide. Pyricularia oryzae is one such pathogen that has been considered the major disease of rice because of its worldwide geographic distribution. P. oryzae belongs to the kingdom fungi, that causes rice blast ultimately adversely affecting the yield of the rice crop. Keeping in view this alarming scenario, the present study was designed so that the identifications of genome-encoded miRNAs of Oryza sativa were employed to target and silence the genome of P. oryzae. This study accomplished the computational analysis of algorithms related to miRNA target prediction. Four computational target prediction algorithms i.e., psRNATarget, RNA22, miRanda, and RNAhybrid were utilized in this investigation. The consensus among target prediction algorithms was created to discover six miRNAs from the O. sativa genome with the conservation of the target site fully evaluated on the genome of P. oryzae. The discovery of these novel six miRNAs in Oryza sativa paved a strong way toward the control of this disease in rice. It will open doors for further research in the field of gene silencing in rice. These miRNAs can be designed and employed in the future as experimentation to create constructs regarding the silencing of P. oryzae in rice crops. In the future, this research would be surely helpful for the development of P. oryzae resistant rice varieties.


Asunto(s)
Ascomicetos , MicroARNs , Oryza , Enfermedades de las Plantas , Oryza/genética , Oryza/microbiología , MicroARNs/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Ascomicetos/genética , Ascomicetos/patogenicidad , Genoma Fúngico , Genoma de Planta , Biología Computacional/métodos , Algoritmos
5.
BMC Genom Data ; 25(1): 76, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187758

RESUMEN

Phenylalanine ammonia lyase (PAL) is a widely studied enzyme in plant biology due to its role in connecting primary metabolism to secondary phenylpropanoid metabolism, significantly influencing plant growth, development, and stress response. Although PAL genes have been extensively studied in various plant species but their exploration in cucumber has been limited. This study successfully identified 11 CsPAL genes in Cucumis sativus (cucumber). These CsPAL genes were categorized based on their conserved sequences revealing patterns through MEME analysis and multiple sequence alignment. Interestingly, cis-elements related to stress were found in the promoter regions of CsPAL genes, indicating their involvement in responding to abiotic stress. Furthermore, these gene's promoters contained components associated with light, development and hormone responsiveness. This suggests that they may have roles in hormone developmental processes. MicroRNAs were identified as a key regulators for the CsPAL genes, playing a crucial role in modulating their expression. This discovery underscores the complex regulatory network involved in the plant's response to various stress conditions. The influence of these microRNAs further highlights the complicated mechanisms that plants use to manage stress. Gene expression patterns were analyzed using RNA-seq data. The significant upregulation of CsPAL9 during HT3h (heat stress for 3 h) and the heightened upregulation of both CsPAL9 and CsPAL7 under HT6h (heat stress for 6 h) in the transcriptome study suggest a potential role for these genes in cucumber's tolerance to heat stress. This comprehensive investigation aims to enhance our understanding of the PAL gene family's versatility, offering valuable insights for advancements in cucumber genetics.


Asunto(s)
Cucumis sativus , Regulación de la Expresión Génica de las Plantas , Fenilanina Amoníaco-Liasa , Estrés Fisiológico , Cucumis sativus/genética , Cucumis sativus/enzimología , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/metabolismo , Estrés Fisiológico/genética , Familia de Multigenes/genética , Regiones Promotoras Genéticas/genética , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Genoma de Planta/genética , Secuencia Conservada/genética
6.
Front Microbiol ; 15: 1437553, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161600

RESUMEN

Chili pepper cultivation in the Indian subcontinent is severely affected by viral diseases, prompting the need for environmentally friendly disease control methods. To achieve this, it is essential to understand the molecular mechanisms of viral resistance in chili pepper. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) genes are known to provide broad-spectrum resistance to various phytopathogens by activating systemic acquired resistance (SAR). An in-depth understanding of NPR1 gene expression during begomovirus infection and its correlation with different biochemical and physiological parameters is crucial for enhancing resistance against begomoviruses in chili pepper. Nevertheless, limited information on chili CaNPR genes and their role in biotic stress constrains their potential in breeding for biotic stress resistance. By employing bioinformatics for genome mining, we identify 5 CaNPR genes in chili. The promoter regions of 1,500 bp of CaNPR genes contained cis-elements associated with biotic stress responses, signifying their involvement in biotic stress responses. Furthermore, these gene promoters harbored components linked to light, development, and hormone responsiveness, suggesting their roles in plant hormone responses and development. MicroRNAs played a vital role in regulating these five CaNPR genes, highlighting their significance in the regulation of chili genes. Inoculation with the begomovirus "cotton leaf curl Khokhran virus (CLCuKV)" had a detrimental effect on chili plant growth, resulting in stunted development, fibrous roots, and evident virus symptoms. The qRT-PCR analysis of two local chili varieties inoculated with CLCuKV, one resistant (V1) and the other susceptible (V2) to begomoviruses, indicated that CaNPR1 likely provides extended resistance and plays a role in chili plant defense mechanisms, while the remaining genes are activated during the early stages of infection. These findings shed light on the function of chili's CaNPR in biotic stress responses and identify potential genes for biotic stress-resistant breeding. However, further research, including gene cloning and functional analysis, is needed to confirm the role of these genes in various physiological and biological processes. This in-silico analysis enhances our genome-wide understanding of how chili CaNPR genes respond during begomovirus infection.

7.
Front Microbiol ; 15: 1433716, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39132133

RESUMEN

Plant parasitic nematodes (PPNs) pose a significant threat to global crop productivity, causing an estimated annual loss of US $157 billion in the agriculture industry. While synthetic chemical nematicides can effectively control PPNs, their overuse has detrimental effects on human health and the environment. Biocontrol agents (BCAs), such as bacteria and fungi in the rhizosphere, are safe and promising alternatives for PPNs control. These BCAs interact with plant roots and produce extracellular enzymes, secondary metabolites, toxins, and volatile organic compounds (VOCs) to suppress nematodes. Plant root exudates also play a crucial role in attracting beneficial microbes toward infested roots. The complex interaction between plants and microbes in the rhizosphere against PPNs is mostly untapped which opens new avenues for discovering novel nematicides through multi-omics techniques. Advanced omics approaches, including metagenomics, transcriptomics, proteomics, and metabolomics, have led to the discovery of nematicidal compounds. This review summarizes the status of bacterial and fungal biocontrol strategies and their mechanisms for PPNs control. The importance of omics-based approaches for the exploration of novel nematicides and future directions in the biocontrol of PPNs are also addressed. The review highlighted the potential significance of multi-omics techniques in biocontrol of PPNs to ensure sustainable agriculture.

8.
Sci Rep ; 14(1): 18438, 2024 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117897

RESUMEN

Utilizing medicinal plants and other natural resources to prevent different types of human cancers is the prime focus of attention. Cervical cancer in women ranks as the fourth most common type of malignancy. The current study used gas chromatography-mass spectrometry (GC-MS) to identify the active phytochemical constituents from Caladium lindenii leaf extracts using ethanol (ECL) and n-hexane (HCL) solvents. Plant extracts were tested for potential cytotoxic effects on HeLa and HEK-293 T cells using the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) and the crystal violet assays. SYBR Green-based real-time PCR was performed to assess the mRNA expression profile of the apoptosis biomarkers (BCL-2 and TP53). The molecular interaction of the compounds with the targeted proteins (TP53, BCL2, EGFR, and HER2) was determined using molecular docking. GC-MS analysis revealed a total of 93 compounds in both extracts. The ECL extract significantly reduced the proliferation of HeLa cervical cancer cells, with an IC50 value of 40 µg/mL, while HEK-293 T cells showed less effect (IC50 = 226 µg/mL). The quantitative RT-PCR gene expression analysis demonstrated the ethanol extract regulated TP53 and BCL2 mRNA expressions in treated cancer cell samples. Heptanediamide, N,N'-di-benzoyloxy-(- 10.1) is the best-docked ligand with a TP53 target found in the molecular docking study, whereas EGFR/Clionasterol had the second highest binding affinity (- 9.7), followed by EGFR/Cycloeucalenol (- 9.6). It is concluded that ECL extract has promising anti-cervical cancer potential and might be valued for developing new plant-derived anticancer agents after further investigations.


Asunto(s)
Apoptosis , Cromatografía de Gases y Espectrometría de Masas , Simulación del Acoplamiento Molecular , Extractos Vegetales , Neoplasias del Cuello Uterino , Humanos , Células HeLa , Extractos Vegetales/farmacología , Extractos Vegetales/química , Apoptosis/efectos de los fármacos , Femenino , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Células HEK293 , Proliferación Celular/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética
9.
Adv Respir Med ; 92(4): 263-277, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39051188

RESUMEN

A common life-threatening hereditary disease, Cystic Fibrosis (CF), affects primarily Caucasian infants. High sweat-salt levels are observed as a result of a single autosomal mutation in chromosome 7 that affects the critical function of the cystic fibrosis transmembrane regulator (CFTR). For establishing tailored treatment strategies, it is important to understand the broad range of CFTR mutations and their impacts on disease pathophysiology. This study thoroughly investigates the six main classes of classification of CFTR mutations based on their functional effects. Each class is distinguished by distinct molecular flaws, such as poor protein synthesis, misfolding, gating defects, conduction defects, and decreased CFTR expression at the apical membrane. Furthermore, this paper focuses on the emerging field of CFTR modulators, which intend to restore CFTR function or mitigate its consequences. These modulators, which are characterized by the mode of action and targeted mutation class, have the potential to provide personalized therapy regimens in CF patients. This review provides valuable insights into the genetic basis of CF pathology, and highlights the potential for precision medicine methods in CF therapy by thoroughly investigating CFTR mutation classification and related modulators.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Mutación , Humanos , Fibrosis Quística/genética , Fibrosis Quística/terapia , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Medicina de Precisión/métodos
10.
AMB Express ; 14(1): 81, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014110

RESUMEN

The issue of antibiotic resistance in pathogenic microbes is a global concern. This study was aimed to explore in silico and in vitro analysis of the antibacterial efficacy of different natural ligands against bacterial activity. The ligands included in the study were Propolis Neoflavanoide 1, Carvacrol, Cinnamaldehyde, Thymol, p-benzoquinone, and Ciprofloxacin (standard drug S*). The outcomes of molecular docking revealed that Propolis Neoflavaniode-1 showed a highly significant binding energy of - 7.1 and - 7.2 kcal/mol for the two gram-positive bacteria, as compared to the gram-negative bacteria. All ligands demonstrated acute toxicity (oral, dermal), except for Propolis Neoflavanoide 1 and S* drugs, with a confidence score range of 50-60%. Using a molecular dynamic simulation approach, we investigated Propolis Neoflavaniode-1's potential for therapeutic use in more detail. An MD simulation lasting 100 ns was performed using the Desmond Simulation software to examine the conformational stability and steady state of Propolis Neoflavaniode-1 in protein molecule complexes. Additionally, in vitro studies confirmed the antimicrobial activity of Propolis Neoflavaniode 1 by increasing the zone of inhibition against Gram-positive bacteria, p < 0.005 as compared to gram-negative bacteria. This study revealed the promising antibacterial efficacy of Propolis Neoflavaniode 1, demonstrated through robust in silico analyses, minimal toxicity, and confirmed in vitro antimicrobial activity, suggesting its potential as a viable alternative to combat antibiotic resistance.

11.
AMB Express ; 14(1): 84, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043981

RESUMEN

Cystic Fibrosis Transmembrane Regulator (CFTR) is a significant protein that is responsible for the movement of ions across cell membranes. The cystic fibrosis (CF) occur due to the mutations in the CFTR gene as it produces the dysfunctional CFTR protein. The sequence of CFTR protein as a target structure was retrieved from UniProt and PDB database. The ligands selection was performed through virtual screening and top 3 ligands choose out of 65 ligands silibinins, curcumin, demethoxycurcumin were selected with a reference drug Trikafta (R*). According to docking, ADMET analyses, the natural ligands (Silibinins and Curcumin) displayed best binding energy, pharmacokinetic and free toxicity than other natural compounds and reference drug (R*). An MD simulation for 200 ns was also established to ensure that natural ligands (Silibinins and Curcumin) attached to the target protein favorably and dynamically, and that protein-ligand complex stability was maintained. It is concluded that silibinins and curcumins have a better capacity to decrease the effect of mutant CFTR protein through improved trafficking and the restoration of original function. In conclusion, in silico studies demonstrate the potential of silibinins and curcumin as therapeutic agents for cystic fibrosis, particularly for the D614G mutated protein. Their ability to increase CFTR function while reducing cellular stress and inflammation, together with their favorable safety profile and accessibility could make them valuable additions to cystic fibrosis treatment options. Further experimental and clinical validation will be required to fully realize their potential and include them into effective therapy regimens.

12.
Pestic Biochem Physiol ; 203: 105995, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084769

RESUMEN

Gray mold disease, caused by Botrytis cinerea is a major postharvest disease impacting fruits such as strawberries and tomatoes. This study explores the use of volatile organic compounds (VOCs) produced by Bacillus spp. as eco-friendly biocontrol agents against B. cinerea. In vitro experiments demonstrated that VOCs from Bacillus sp. LNXM12, B. thuringiensis GBAC46, and B. zhanghouensis LLTC93-VOCs inhibited fungal growth by 61.2%, 40.5%, and 21.6%, respectively, compared to the control. LNXM12 was selected for further experiments due to its highest control efficacy of 58.3% and 76.6% on tomato and strawberry fruits, respectively. The LNXM12 VOCs were identified through gas chromatography-mass spectrometry (GC-MS) analysis, and 22 VOCs were identified. Synthetic VOCs with the highest probability percentage, namely ethyloctynol, 3-methyl-2-pentanone (3M2P), 1,3-butadiene-N, N-dimethylformamide (DMF), and squalene were used in experiments. The results showed that the synthetic VOCs ethyloctynol and 3M2P were highly effective, with an inhibition rate of 56.8 and 57.1% against fungal mycelium radial growth at 120 µg/mL on agar plates. Trypan blue staining revealed strongly disrupted, deeper blue, and lysed mycelium in VOC-treated B. cinerea. The scanning and transmission electron microscope (SEM and TEM) results showed that fungal mycelium was smaller, irregular, and shrunken after synthetic VOC treatments. Furthermore, the synthetic VOCs Ethyloctynol and 3M2P revealed high control efficacy on tomatoes and strawberries infected by B. cinerea. The control efficacy on leaves was 67.2%, 66.1% and 64.5%, 78.4% respectively. Similarly, the control efficiency on fruits was 45.5%, 67.3% and 46.3% 65.1%. The expression of virulence genes in B. cinerea was analyzed, and the results revealed that selected genes BcSpl1, BcXyn11A, BcPG2, BcNoxB, BcNoxR, and BcPG1 were downregulated after VOCs treatment. The overall result revealed novel mechanisms by which Bacillus sp. volatiles control postharvest gray mold disease.


Asunto(s)
Bacillus , Botrytis , Fragaria , Enfermedades de las Plantas , Solanum lycopersicum , Compuestos Orgánicos Volátiles , Botrytis/efectos de los fármacos , Compuestos Orgánicos Volátiles/farmacología , Compuestos Orgánicos Volátiles/química , Solanum lycopersicum/microbiología , Fragaria/microbiología , Bacillus/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Antifúngicos/farmacología , Cromatografía de Gases y Espectrometría de Masas , Fungicidas Industriales/farmacología , Agentes de Control Biológico/farmacología , Frutas/microbiología , Frutas/química
13.
BMC Genom Data ; 25(1): 71, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030545

RESUMEN

The coffee industry holds importance, providing livelihoods for millions of farmers globally and playing a vital role in the economies of coffee-producing countries. Environmental conditions such as drought and temperature fluctuations can adversely affect the quality and yield of coffee crops.Carotenoid cleavage oxygenases (CCO) enzymes are essential for coffee plants as they help break down carotenoids contributing to growth and stress resistance. However, knowledge about the CCO gene family in Coffee arabica was limited. In this study identified 21 CCO genes in Coffee arabica (C. arabica) revealing two subfamilies carotenoid cleavage dioxygenases (CCDs) and 9-cis-epoxy carotenoid dioxygenases (NCED) through phylogenic analysis. These subfamilies exhibited distribution patterns in terms of gene structure, domains, and motifs. The 21 CaCCO genes, comprising 5 NCED and 16 CCD genes were found across chromosomes. Promoter sequencing analysis revealed cis-elements that likely interact with plant stress-responsive, growth-related, and phytohormones, like auxin and abscisic acid. A comprehensive genome-wide comparison, between C. arabica and A. thaliana was conducted to understand the characteristics of CCO genes. RTqPCR data indicated that CaNCED5, CaNCED6, CaNCED12, and CaNCED20 are target genes involved in the growth of drought coffee plants leading to increased crop yield, in a conditions, with limited water availability. This reveals the role of coffee CCOs in responding to abiotic stress and identifies potential genes useful for breeding stress-resistant coffee varieties.


Asunto(s)
Coffea , Oxigenasas , Filogenia , Estrés Fisiológico , Estrés Fisiológico/genética , Oxigenasas/genética , Oxigenasas/metabolismo , Coffea/genética , Familia de Multigenes , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Genoma de Planta/genética , Café/genética , Regiones Promotoras Genéticas/genética , Carotenoides/metabolismo , Estudio de Asociación del Genoma Completo
14.
AMB Express ; 14(1): 61, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801471

RESUMEN

Ribosome-inactivating proteins (RIPs) are highly active N-glycosidases that depurinate both bacterial and eukaryotic rRNAs, halting protein synthesis during translation. Found in a diverse spectrum of plant species and tissues, RIPs possess antifungal, antibacterial, antiviral, and insecticidal properties linked to plant defense. In this study, we investigated the physiochemical properties of RIP peptides from the Cucurbitaceae family through bioinformatics approaches. Molecular weight, isoelectric point, aliphatic index, extinction coefficient, and secondary structures were analyzed, revealing their hydrophobic nature. The novelty of this work lies in the comprehensive examination of RIPs from the Cucurbitaceae family and their potential therapeutic applications. The study also elucidated the binding interactions of Cucurbitaceae RIPs with key biological targets, including Interleukin-6 (IL-6). Strong hydrogen bond interactions between RIPs and these targets suggest potential for innovative insilico drug design and therapeutic applications, particularly in cancer treatment. Comprehensive analysis of bond lengths using Ligpolt + software provides insights for optimizing molecular interactions, offering a valuable tool for drug design and structural biology studies.

15.
Sci Rep ; 14(1): 8408, 2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600156

RESUMEN

The current study was conducted on the inhabitants living in the area adjacent to the Hudiara drain using bore water and vegetables adjacent to the Hudiara drain. Toxic heavy metals badly affect human health because of industrial environmental contamination. Particularly hundreds of millions of individuals globally have faced the consequences of consuming water and food tainted with pollutants. Concentrations of heavy metals in human blood were elevated in Hudiara drainings in Lahore city, Pakistan, due to highly polluted industrial effluents. The study determined the health effects of high levels of heavy metals (Cd, Cu, Zn, Fe, Pb, Ni, Hg, Cr) on residents of the Hudiara draining area, including serum MDA, 8-Isoprostane, 8-hydroxyguanosine, and creatinine levels. An absorption spectrophotometer was used to determine heavy metals in wate water, drinking water, soil, plants and human beings blood sampleas and ELISA kits were used to assess the level of 8-hydroxyguanosine, MDA, 8-Isoprostane in plasma serum creatinine level. Waste water samples, irrigation water samples, drinking water samples, Soil samples, Plants samples and blood specimens of adult of different weights and ages were collected from the polluted area of the Hudiara drain (Laloo and Mohanwal), and control samples were obtained from the unpolluted site Sheiikhpura, 60 km away from the site. Toxic heavy metals in blood damage the cell membrane and DNA structures, increasing the 8-hydroxyguanosine, MDA, creatinine, and 8-Isoprostane. Toxic metals contaminated bore water and vegetables, resulting in increased levels of creatinine, MDA, Isoprostane, and 8-hydroxy-2-guanosine in the blood of inhabitants from the adjacent area Hudiara drain compared to the control group. In addition,. This study also investigated heavy metal concentrations in meat and milk samples from buffaloes, cows, and goats. In meat, cow samples showed the highest Cd, Cu, Fe and Mn concentrations. In milk also, cows exhibited elevated Cu and Fe levels compared to goats. The results highlight species-specific variations in heavy metal accumulation, emphasizing the need for targeted monitoring to address potential health risks. The significant difference between the two groups i.e., the control group and the affected group, in all traits of the respondents (weight, age, heavy metal values MDA, 8-Isoprostane, 8-hydroxyguaniosine, and serum creatinine level). Pearson's correlation coefficient was calculated. The study has shown that the level of serum MDA, 8-Isoprostane, 8-hydroxyguaniosine, or creatinine has not significantly correlated with age, so it is independent of age. This study has proved that in Pakistan, the selected area of Lahore in the villages of Laloo and Mohanwal, excess of heavy metals in the human body damages the DNA and increases the level of 8-Isoprostane, MDA, creatinine, and 8-hydroxyguaniosine. As a result, National and international cooperation must take major steps to control exposure to heavy metals.


Asunto(s)
Agua Potable , Metales Pesados , Contaminantes del Suelo , Adulto , Humanos , Animales , Bovinos , Creatinina/análisis , Contaminantes del Suelo/metabolismo , Pakistán , Agua Potable/análisis , Cadmio/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Intoxicación por Metales Pesados , Suelo/química , Verduras/metabolismo , Daño del ADN , ADN , Cabras/metabolismo , Medición de Riesgo
16.
Sci Rep ; 14(1): 8920, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637588

RESUMEN

Land transportation is a major source of heavy metal contamination along the roadside, posing significant risks to human health through inhalation, oral ingestion, and dermal contact. Therefore, this study has been designed to determine the concentrations of vehicular released heavy metals (Cd, Pb, Ni, and Cu) in roadside soil and leaves of two commonly growing native plant species (Calotropis procera and Nerium oleander).Two busy roads i.e., Lahore-Okara road (N-5) and Okara-Faisalabad roads (OFR) in Punjab, Pakistan, were selected for the study. The data were collected from five sites along each road during four seasons. Control samples were collected ~ 50 m away from road. The metal content i.e. lead (Pb), cadmium (Cd) nickel (Ni) and copper (Cu) were determined in the plant leaves and soil by using Atomic Absorption Spectrophotometer (AAS). Significantly high amount of all studied heavy metals were observed in soil and plant leaves along both roads in contrast to control ones. The mean concentration of metals in soil ranged as Cd (2.20-6.83 mg/kg), Pb (4.53-15.29 mg/kg), Ni (29.78-101.26 mg/kg), and Cu (61.68-138.46 mg/kg) and in plant leaves Cd (0.093-0.53 mg/kg), Pb (4.31-16.34 mg/kg), Ni (4.13-16.34 mg/kg) and Cu (2.98-32.74 mg/kg). Among roads, higher metal contamination was noted along N-5 road. Significant temporal variations were also noted in metal contamination along both roads. The order of metal contamination in soil and plant leaves in different seasons was summer > autumn > spring > winter. Furthermore, the metal accumulation potential of Calotropis procera was higher than that of Nerium oleander. Therefore, for sustainable management of metal contamination, the plantation of Calotropis procera is recommended along roadsides.


Asunto(s)
Calotropis , Metales Pesados , Nerium , Contaminantes del Suelo , Humanos , Cadmio/análisis , Suelo , Biodegradación Ambiental , Plomo , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Níquel , Plantas , Monitoreo del Ambiente
17.
Funct Integr Genomics ; 24(2): 73, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598147

RESUMEN

Vitamin C, also known as ascorbic acid, is an essential nutrient that plays a critical role in many physiological processes in plants and animals. In humans, vitamin C is an antioxidant, reducing agent, and cofactor in diverse chemical processes. The established role of vitamin C as an antioxidant in plants is well recognized. It neutralizes reactive oxygen species (ROS) that can cause damage to cells. Also, it plays an important role in recycling other antioxidants, such as vitamin E, which helps maintain the overall balance of the plant's antioxidant system. However, unlike plants, humans cannot synthesize ascorbic acid or vitamin C in their bodies due to the absence of an enzyme called gulonolactone oxidase. This is why humans need to obtain vitamin C through their diet. Different fruits and vegetables contain varying levels of vitamin C. The biosynthesis of vitamin C in plants occurs primarily in the chloroplasts and the endoplasmic reticulum (ER). The biosynthesis of vitamin C is a complex process regulated by various factors such as light, temperature, and plant hormones. Recent research has identified several key genes that regulate vitamin C biosynthesis, including the GLDH and GLDH genes. The expression of these genes is known to be regulated by various factors such as light, temperature, and plant hormones. Recent studies highlight vitamin C's crucial role in regulating plant stress response pathways, encompassing drought, high salinity, and oxidative stress. The key enzymes in vitamin C biosynthesis are L-galactose dehydrogenase (GLDH) and L-galactono-1, 4-lactone dehydrogenase (GLDH). Genetic studies reveal key genes like GLDH and GLDH in Vitamin C biosynthesis, offering potential for crop improvement. Genetic variations influence nutritional content through their impact on vitamin C levels. Investigating the roles of genes in stress responses provides insights for developing resilient techniques in crop growth. Some fruits and vegetables, such as oranges, lemons, and grapefruits, along with strawberries and kiwi, are rich in vitamin C. Guava. Papaya provides a boost of vitamin C and dietary fiber. At the same time, red and yellow bell peppers, broccoli, pineapple, mangoes, and kale are additional sources of this essential nutrient, promoting overall health. In this review, we will discuss a brief history of Vitamin C and its signaling and biosynthesis pathway and summarize the regulation of its content in various fruits and vegetables.


Asunto(s)
Ácido Ascórbico , Verduras , Animales , Humanos , Antioxidantes , Frutas/genética , Reguladores del Crecimiento de las Plantas , Productos Agrícolas/genética , Transducción de Señal
18.
Mol Plant Pathol ; 25(3): e13442, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38476100

RESUMEN

The type VI secretion system (T6SS) of many gram-negative bacteria injects toxic effectors into adjacent cells to manipulate host cells during pathogenesis or to kill competing bacteria. However, the identification and function of the T6SS effectors remains only partly known. Pantoea ananatis, a gram-negative bacterium, is commonly found in various plants and natural environments, including water and soil. In the current study, genomic analysis of P. ananatis DZ-12 causing brown stalk rot on maize demonstrated that it carries three T6SS gene clusters, namely, T6SS-1, T6SS-2, and T6SS-3. Interestingly, only T6SS-1 secretion systems are involved in pathogenicity and bacterial competition. The study also investigated the T6SS-1 system in detail and identified an unknown T6SS-1-secreted effector TseG by using the upstream T6SS effector chaperone TecG containing a conserved domain of DUF2169. TseG can directly interact with the chaperone TecG for delivery and with a downstream immunity protein TsiG for protection from its toxicity. TseG, highly conserved in the Pantoea genus, is involved in virulence in maize, potato, and onion. Additionally, P. ananatis uses TseG to target Escherichia coli, gaining a competitive advantage. This study provides the first report on the T6SS-1-secreted effector from P. ananatis, thereby enriching our understanding of the various types and functions of type VI effector proteins.


Asunto(s)
Pantoea , Sistemas de Secreción Tipo VI , Sistemas de Secreción Tipo VI/metabolismo , Pantoea/genética , Sistemas de Secreción Bacterianos/genética , Virulencia/genética , Antibacterianos , Chaperonas Moleculares , Proteínas Bacterianas/metabolismo
19.
BMC Genom Data ; 25(1): 26, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443818

RESUMEN

YABBY gene family is a plant-specific transcription factor with DNA binding domain involved in various functions i.e. regulation of style, length of flowers, and polarity development of lateral organs in flowering plants. Computational methods were utilized to identify members of the YABBY gene family, with Carrot (Daucus carota) 's genome as a foundational reference. The structure of genes, location of the chromosomes, protein motifs and phylogenetic investigation, syntony and transcriptomic analysis, and miRNA targets were analyzed to unmask the hidden structural and functional characteristics YABBY gene family in Carrots. In the following research, it has been concluded that 11 specific YABBY genes irregularly dispersed on all 9 chromosomes and proteins assembled into five subgroups i.e. AtINO, AtCRC, AtYAB5, AtAFO, and AtYAB2, which were created on the well-known classification of Arabidopsis. The wide ranges of YABBY genes in carrots were dispersed due to segmental duplication, which was detected as prevalent when equated to tandem duplication. Transcriptomic analysis showed that one of the DcYABBY genes was highly expressed during anthocyanin pigmentation in carrot taproots. The cis-regulatory elements (CREs) analysis unveiled elements that particularly respond to light, cell cycle regulation, drought induce ability, ABA hormone, seed, and meristem expression. Furthermore, a relative study among Carrot and Arabidopsis genes of the YABBY family indicated 5 sub-families sharing common characteristics. The comprehensive evaluation of YABBY genes in the genome provides a direction for the cloning and understanding of their functional properties in carrots. Our investigations revealed genome-wide distribution and role of YABBY genes in the carrots with best-fit comparison to Arabidopsis thaliana.


Asunto(s)
Arabidopsis , Daucus carota , Tephritidae , Animales , Daucus carota/genética , Arabidopsis/genética , Filogenia , Semillas
20.
Sci Rep ; 14(1): 7114, 2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531994

RESUMEN

The growth and productivity of maize are severely affected by soil salinity. The crucial determinants for the future performance of plants are productive for seed germination and seedling establishment; however, both stages are liable to soil salinity. For grain, maize is an economically significant crop sensitive to abiotic stresses. However, little is known about defense responses by the salinity-induced antioxidant and oxidative stress in maize. In our work, the commercially available maize variety Raka-Poshi was grown in pots for 30 days under greenhouse conditions. To evaluate the salt-induced oxidative/antioxidant responses in maize for salt stress 0, 25, 50, 75, 100 and 150 mM concentrations, treatments were provided using sodium chloride (NaCl). All the biochemical indices were calculated under all NaCl concentrations, while drought was induced by up to 50% irrigation water. After 30 days of seed germination, the maize leaves were collected for the measurement of lipid peroxidase or malondialdehyde (MDA), glutathione reductase (GR), guaiacol peroxidase (GPOD), hydrogen peroxide (H2O2), superoxide dismutase (SOD), lipoxygenase (LOX), catalase (CAT), ascorbate peroxidase (APOD) and glutathione-S-transferase (GST). The results revealed a 47% reduction under 150 mM NaCl and 50% drought stress conditions. The results have shown that the successive increase of NaCl concentrations and drought caused an increase in catalase production. With successive increase in NaCl concentration and drought stress, lower levels of H2O2, SOD, and MDA were detected in maize leaves. The results regarding the morphology of maize seedlings indicated a successive reduction in the root length and shoot length under applications of salt and drought stress, while root-to-shoot weights were found to be increased under drought stress and decreased under salt stress conditions During gene expression analysis collectively indicate that, under drought stress conditions, the expression levels of all nine mentioned enzyme-related genes were consistently downregulated.


Asunto(s)
Antioxidantes , Zea mays , Antioxidantes/metabolismo , Catalasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Cloruro de Sodio/metabolismo , Estrés Fisiológico , Plantones , Superóxido Dismutasa/metabolismo , Suelo , Mecanismos de Defensa , Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA