Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Stem Cell Reports ; 19(2): 187-195, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38242131

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal, adult-onset neurodegenerative disorder characterized by progressive muscular weakness due to the selective loss of motor neurons. Mutations in the gene Fused in Sarcoma (FUS) were identified as one cause of ALS. Here, we report that mutations in FUS lead to upregulation of synaptic proteins, increasing synaptic activity and abnormal release of vesicles at the synaptic cleft. Consequently, FUS-ALS neurons showed greater vulnerability to glutamate excitotoxicity, which raised neuronal swellings (varicose neurites) and led to neuronal death. Fragile X mental retardation protein (FMRP) is an RNA-binding protein known to regulate synaptic protein translation, and its expression is reduced in the FUS-ALS lines. Collectively, our data suggest that a reduction of FMRP levels alters the synaptic protein dynamics, leading to synaptic dysfunction and glutamate excitotoxicity. Here, we present a mechanistic hypothesis linking dysregulation of peripheral translation with synaptic vulnerability in the pathogenesis of FUS-ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , Adulto , Humanos , Esclerosis Amiotrófica Lateral/patología , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas Motoras/metabolismo , Mutación , Glutamatos/metabolismo , Proteína FUS de Unión a ARN/genética
2.
Cerebellum ; 21(4): 681-714, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34491551

RESUMEN

A hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) with synaptic dysfunction identified as an early pathological hallmark. Although TDP-43 pathology and overt neurodegeneration are largely absent from the cerebellum, the pathological hallmarks of RNA foci and dipeptide repeat protein (DPR) inclusions are most abundant. Here, we present a systematic literature search in the databases of PubMed, Scopus, Embase, Web of Science and Science Direct up until March 5, 2021, which yielded 19,515 publications. Following the exclusion criteria, 72 articles were included having referred to C9orf72, synapses and the cerebellum. Meta-analyses were conducted on studies which reported experimental and control groups with means and standard deviations extracted from figures using the online tool PlotDigitizer. This revealed dendritic defects (P = 0.03), reduced C9orf72 in human patients (P = 0.005) and DPR-related neuronal loss (P = 0.0006) but no neuromuscular junction abnormalities (P = 0.29) or cerebellar neuronal loss (P = 0.23). Our results suggest that dendritic arborisation defects, synaptic gene dysregulation and altered synaptic neurotransmission may drive cerebellar synaptic dysfunction in C9-ALS/FTD. In this review, we discuss how the chronological appearance of the different pathological hallmarks alters synaptic integrity which may have profound implications for disease progression. We conclude that a reduction in C9orf72 protein levels combined with the accumulation of RNA foci and DPRs act synergistically to drive C9 synaptopathy in the cerebellum of C9-ALS/FTD patients.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C9orf72 , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Expansión de las Repeticiones de ADN , Dipéptidos/genética , Dipéptidos/metabolismo , Demencia Frontotemporal/genética , Humanos , ARN
3.
Nutrients ; 13(11)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34836233

RESUMEN

Metabolism and nutrition have a significant role in epigenetic modifications such as DNA methylation, which can influence gene expression. Recently, it has been suggested that bioactive nutrients and gut microbiota can alter DNA methylation in the central nervous system (CNS) through the gut-brain axis, playing a crucial role in modulating CNS functions and, finally, behavior. Here, we will focus on the effect of metabolic signals in shaping brain DNA methylation during adulthood. We will provide an overview of potential interactions among diet, gastrointestinal microbiome and epigenetic alterations on brain methylation and behavior. In addition, the impact of different diet challenges on cytosine methylation dynamics in the adult brain will be discussed. Finally, we will explore new ways to modulate DNA hydroxymethylation, which is particularly abundant in neural tissue, through diet.


Asunto(s)
Encéfalo/metabolismo , Metilación de ADN , Dieta , Adulto , Enfermedad de Alzheimer/genética , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Eje Cerebro-Intestino/fisiología , Cognición , Dopamina/metabolismo , Epigénesis Genética , Microbioma Gastrointestinal/fisiología , Humanos , Neuroprotección , Probióticos
4.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808221

RESUMEN

Aging is inevitable and it is one of the major contributors to cognitive decline. However, the mechanisms underlying age-related cognitive decline are still the object of extensive research. At the biological level, it is unknown how the aging brain is subjected to progressive oxidative stress and neuroinflammation which determine, among others, mitochondrial dysfunction. The link between mitochondrial dysfunction and cognitive impairment is becoming ever more clear by the presence of significant neurological disturbances in human mitochondrial diseases. Possibly, the most important lifestyle factor determining mitochondrial functioning is nutrition. Therefore, with the present work, we review the latest findings disclosing a link between nutrition, mitochondrial functioning and cognition, and pave new ways to counteract cognitive decline in late adulthood through diet.


Asunto(s)
Disfunción Cognitiva/dietoterapia , Enfermedades Mitocondriales/dietoterapia , Envejecimiento/fisiología , Antioxidantes/metabolismo , Encéfalo/metabolismo , Cognición/fisiología , Disfunción Cognitiva/fisiopatología , Dieta/métodos , Dieta/tendencias , Humanos , Inflamación/metabolismo , Mitocondrias/metabolismo , Enfermedades Mitocondriales/fisiopatología , Neuroinmunomodulación/fisiología , Estado Nutricional , Estrés Oxidativo
5.
Nutrients ; 12(8)2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32764281

RESUMEN

Choline is a water-soluble nutrient essential for human life. Gut microbial metabolism of choline results in the production of trimethylamine (TMA), which, upon absorption by the host is converted into trimethylamine-N-oxide (TMAO) in the liver. A high accumulation of both components is related to cardiovascular disease, inflammatory bowel disease, non-alcoholic fatty liver disease, and chronic kidney disease. However, the relationship between the microbiota production of these components and its impact on these diseases still remains unknown. In this review, we will address which microbes contribute to TMA production in the human gut, the extent to which host factors (e.g., the genotype) and diet affect TMA production, and the colonization of these microbes and the reversal of dysbiosis as a therapy for these diseases.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Colina/metabolismo , Microbioma Gastrointestinal , Metilaminas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Insuficiencia Renal Crónica/metabolismo , Animales , Disponibilidad Biológica , Colina/genética , Colina/farmacocinética , Dieta/métodos , Disbiosis/metabolismo , Genotipo , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Hígado/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA