Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
3 Biotech ; 13(9): 296, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37564274

RESUMEN

The effect and contribution of an external magnetic field (MF) on the uptake and translocation of nanoparticles (NPs) in plants have been investigated in this study. Barley was treated with iron oxide NPs (Fe3O4, 500 mg/L, 50-100 nm) and grown under various MF strengths (20, 42, 125, and 250 mT). The root-to-shoot translocation of NPs was assessed using a vibrating sample magnetometer (VSM) and inductively coupled plasma optical emission spectrometry (ICP-OES). Additionally, plant phenological parameters, such as germination, protein and chlorophyll content, and photosynthetic and nutritional status, were examined. The results demonstrated that the external MF significantly enhances the uptake of NPs through the roots. The uptake was higher at lower MF strengths (20 and 42 mT) than at higher MF strengths (125 and 250 mT). The root and shoot iron (Fe) contents were approximately 2.5-3-fold higher in the 250 mT application compared to the control. Furthermore, the MF treatments significantly increased micro-elements such as Mn, Zn, Cu, Mo, and B (P < 0.005). This effect could be attributed to the disruption of cell membranes at the root tip cells caused by both the MF and NPs. Moreover, the MF treatments improved germination rates by 28%, total protein content, and photosynthetic parameters. These findings show that magnetic field application helps the effective transport of magnetic NPs, which could be essential for NPs-mediated drug delivery, plant nutrition, and genetic transformation applications. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03727-4.

2.
Biotechnol Bioeng ; 120(8): 2242-2252, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37337921

RESUMEN

The power performance of the bio-electrochemical fuel cells (BEFCs) depends mainly on the energy harvesting ability of the anode material. The anode materials with low bandgap energy and high electrochemical stability are highly desirable in the BEFCs. To address this issue, a novel anode is designed using indium tin oxide (ITO) modified by chromium oxide quantum dots (CQDs). The CQDs were synthesized using facile and advanced pulsed laser ablation in liquid (PLAL) technique. The combination of ITO and CQDs improved the optical properties of the photoanode by exhibiting a broad range of absorption in the visible to UV region. A systematic study has been performed to optimize the amount of CQDs and green Algae (Alg) film grown using the drop casting method. Chlorophyll (a, b, and total) content of algal cultures (with different concentrations) were optimized to investigate the power generation performance of each cell. The BEFC cell (ITO/Alg10/Cr3//Carbon) with optimized amounts of Alg and CQDs demonstrated enhanced photocurrent generation of 120 mA cm-2 at a photo-generated potential of 24.6 V m-2 . The same device exhibited a maximum power density of 7 W m-2 under continuous light illumination. The device also maintained 98% of its initial performance after 30 repeated cycles of light on-off measurements.


Asunto(s)
Chlorophyta , Puntos Cuánticos , Puntos Cuánticos/química , Electricidad , Carbono
3.
Plant Physiol Biochem ; 170: 36-48, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34844116

RESUMEN

The magnetic field (MF) interacts with biological systems and has the potential to increase germination, plant growth and productivity. Although it is known as a low cost and promising approach, the mechanism that increases growth is not fully understood yet. In this study, the effect of different MF strengths (20, 42, 125, and 250 mT) was investigated on barley (Hordeum vulgare L.). In addition to phenological parameters, possible cell damage, electron transport rate, chlorophyll fluorescence, magnetic character and elemental status of tissues were determined. Results showed that lower strengths (≤125 mT) of MF treatment improve germination. Confocal microscopy analyzes revealed MF-induced cell membrane damage in roots that could alter the elemental content of tissues. Elemental analyzes found that the content of macroelements (Ca, Mg, P, and K) are gradually reduced with increasing MF forces; in opposite the microelement contents (Fe, B, Cu, Mn, Zn, and Mo) are increased in roots. Diamagnetism is the dominant magnetic character in all root and leaf samples. However, the roots became surprisingly superparamagnetic in 250 mT application. It seems that MF treatment at higher strength (250 mT in this study) could influence the orientation of magnetic moments. These findings suggest that MF application: i) can alter the magnetic character of plants, ii) enhances the germination, photosynthetic machinery, and growth, and iii) affects the nutrient uptake and abundance in tissues, depending on the MF strength. This comprehensive study can help in understanding the interaction of magnetic field with plants.


Asunto(s)
Hordeum , Clorofila , Fluorescencia , Germinación , Campos Magnéticos , Nutrientes , Raíces de Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA