Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Lancet Reg Health Eur ; 6: 100122, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34027514

RESUMEN

BACKGROUND: While the leading symptoms during coronavirus disease 2019 (COVID-19) are acute and the majority of patients fully recover, a significant fraction of patients now increasingly experience long-term health consequences. However, most data available focus on health-related events after severe infection and hospitalisation. We present a longitudinal, prospective analysis of health consequences in patients who initially presented with no or minor symptoms of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection. Hence, we focus on mild COVID-19 in non-hospitalised patients. METHODS: 958 Patients with confirmed SARS-CoV-2 infection were observed from April 6th to December 2nd 2020 for long-term symptoms and SARS-CoV-2 antibodies. We identified anosmia, ageusia, fatigue or shortness of breath as most common, persisting symptoms at month 4 and 7 and summarised presence of such long-term health consequences as post-COVID syndrome (PCS). Predictors of long-term symptoms were assessed using an uni- and multivariable logistic regression model. FINDINGS: We observed 442 and 353 patients over four and seven months after symptom onset, respectively. Four months post SARS-CoV-2 infection, 8•6% (38/442) of patients presented with shortness of breath, 12•4% (55/442) with anosmia, 11•1% (49/442) with ageusia and 9•7% (43/442) with fatigue. At least one of these characteristic symptoms was present in 27•8% (123/442) and 34•8% (123/353) at month 4 and 7 post-infection, respectively. A lower baseline level of SARS-CoV-2 IgG, anosmia and diarrhoea during acute COVID-19 were associated with higher risk to develop long-term symptoms. INTERPRETATION: The on-going presence of either shortness of breath, anosmia, ageusia or fatigue as long-lasting symptoms even in non-hospitalised patients was observed at four and seven months post-infection and summarised as post-COVID syndrome (PCS). The continued assessment of patients with PCS will become a major task to define and mitigate the socioeconomic and medical long-term effects of COVID-19. FUNDING: COVIM:"NaFoUniMedCovid19"(FKZ: 01KX2021).

2.
Kidney Int Rep ; 6(5): 1368-1378, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34013115

RESUMEN

INTRODUCTION: Disease-causing mutations in the protocadherin FAT1 have been recently described both in patients with a glomerulotubular nephropathy and in patients with a syndromic nephropathy. METHODS: We identified 4 patients with FAT1-associated disease, performed clinical and genetic characterization, and compared our findings to the previously published patients. Patient-derived primary urinary epithelial cells were analyzed by quantitative polymerase chain reaction (qPCR) and immunoblotting to identify possible alterations in Hippo signaling. RESULTS: Here we expand the spectrum of FAT1-associated disease with the identification of novel FAT1 mutations in 4 patients from 3 families (homozygous truncating variants in 3, compound heterozygous missense variants in 1 patient). All patients show an ophthalmologic phenotype together with heterogeneous renal phenotypes ranging from normal renal function to early-onset end-stage kidney failure. Molecular analysis of primary urine-derived urinary renal epithelial cells revealed alterations in the Hippo signaling cascade with a decreased phosphorylation of both the core kinase MST and the downstream effector YAP. Consistently, we found a transcriptional upregulation of bona fide YAP target genes. CONCLUSION: A comprehensive review of the here identified patients and those previously published indicates a highly diverse phenotype in patients with missense mutations but a more uniform and better recognizable phenotype in the patients with truncating mutations. Altered Hippo signaling and de-repressed YAP activity might be novel contributing factors to the pathomechanism in FAT1-associated renal disease.

3.
RNA ; 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33906975

RESUMEN

The current ecosystem of single cell RNA-seq platforms is rapidly expanding, but robust solutions for single cell and single molecule full- length RNA sequencing are virtually absent. A high-throughput solution that covers all aspects is necessary to study the complex life of mRNA on the single cell level. The Nanopore platform offers long read sequencing and can be integrated with the popular single cell sequencing method on the 10x Chromium platform. However, the high error-rate of Nanopore reads poses a challenge in downstream processing (e.g. for cell barcode assignment). We propose a solution to this particular problem by using a hybrid sequencing approach on Nanopore and Illumina platforms. Our software ScNapBar enables cell barcode assignment with high accuracy, especially if sequencing satura- tion is low. ScNapBar uses unique molecular identifier (UMI) or Naive Bayes probabilistic approaches in the barcode assignment, depending on the available Illumina sequencing depth. We have benchmarked the two approaches on simulated and real Nanopore datasets. We further applied ScNapBar to pools of cells with an active or a silenced non-sense mediated RNA decay pathway. Our Nanopore read assignment distinguishes the respective cell populations and reveals characteristic nonsense-mediated mRNA decay events depending on cell status.

4.
Hum Mutat ; 42(4): 460-472, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33600046

RESUMEN

Hereditary lower motor neuron diseases (LMND) other than 5q-spinal muscular atrophy (5q-SMA) can be classified according to affected muscle groups. Proximal and distal forms of non-5q-SMA represent a clinically and genetically heterogeneous spectrum characterized by significant overlaps with axonal forms of Charcot-Marie-Tooth (CMT) disease. A consensus for the best approach to molecular diagnosis needs to be reached, especially in light of continuous novel gene discovery and falling costs of next-generation sequencing (NGS). We performed exome sequencing (ES) in 41 families presenting with non-5q-SMA or axonal CMT, 25 of which had undergone a previous negative neuromuscular disease (NMD) gene panel analysis. The total diagnostic yield of ES was 41%. Diagnostic success in the cohort with a previous NMD-panel analysis was significantly extended by ES, primarily due to novel gene associated-phenotypes and uncharacteristic phenotypic presentations. We recommend early ES for individuals with hereditary LMND presenting uncharacteristic or significantly overlapping features. As mitochondrial dysfunction was the underlying pathomechanism in 47% of the solved individuals, we highlight the sensitivity of the anterior horn cell and peripheral nerve to mitochondrial imbalance as well as the necessity to screen for mitochondrial disorders in individuals presenting predominant lower motor neuron symptoms.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Atrofia Muscular Espinal , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Enfermedad de Charcot-Marie-Tooth/genética , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mitocondrias/genética , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética
5.
Clin Nephrol ; 94(4): 197-206, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32870147

RESUMEN

C3 glomerulonephritis (C3GN) is a rare but severe form of kidney disease caused by fluid-phase dysregulation of the alternative complement pathway. Causative mutations in complement regulating genes as well as auto-immune forms of C3GN have been described. However, therapy and prognosis in individual patients remain a matter of debate and long-term data are scarce. This also applies for the management of transplant patients as disease recurrence post-transplant is frequent. Here, we depict the clinical courses of two sisters with the unique combination of an identical, homozygous mutation in the complement factor H (CFH) gene as well as autoantibodies with a clinical follow-up of more than 20 years. Interestingly, the sisters presented with discordant clinical courses of C3GN with normal kidney function in one (patient A) and end-stage kidney disease in the other sister (patient B). In patient B, eculizumab was administered immediately prior to and in the course after kidney transplantation, with the result of a stable graft function without any signs of disease recurrence. Comprehensive genetic work-up revealed no further disease-causing mutation in both sisters. Intriguingly, the auto-antibody profile substantially differed in both sisters: autoantibodies in patient A reduced the C3b deposition, while the antibodies identified in patient B increased complement activation and deposition of split products. This study underlines the concept of a personalized-medicine approach in complement-associated diseases after thorough evaluation of the individual risk profile in each patient.


Asunto(s)
Autoanticuerpos/sangre , Complemento C3/metabolismo , Factor H de Complemento/genética , Glomerulonefritis , Femenino , Humanos , Riñón/fisiología , Riñón/fisiopatología , Fallo Renal Crónico , Mutación/genética
6.
Nat Commun ; 10(1): 4919, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31664039

RESUMEN

Familial Adult Myoclonic Epilepsy (FAME) is a genetically heterogeneous disorder characterized by cortical tremor and seizures. Intronic TTTTA/TTTCA repeat expansions in SAMD12 (FAME1) are the main cause of FAME in Asia. Using genome sequencing and repeat-primed PCR, we identify another site of this repeat expansion, in MARCH6 (FAME3) in four European families. Analysis of single DNA molecules with nanopore sequencing and molecular combing show that expansions range from 3.3 to 14 kb on average. However, we observe considerable variability in expansion length and structure, supporting the existence of multiple expansion configurations in blood cells and fibroblasts of the same individual. Moreover, the largest expansions are associated with micro-rearrangements occurring near the expansion in 20% of cells. This study provides further evidence that FAME is caused by intronic TTTTA/TTTCA expansions in distinct genes and reveals that expansions exhibit an unexpectedly high somatic instability that can ultimately result in genomic rearrangements.


Asunto(s)
Expansión de las Repeticiones de ADN , Epilepsias Mioclónicas/genética , Proteínas de la Membrana/genética , Ubiquitina-Proteína Ligasas/genética , Adolescente , Adulto , Anciano , Mapeo Cromosómico , Femenino , Humanos , Intrones , Masculino , Persona de Mediana Edad , Linaje , Adulto Joven
7.
Am J Med Genet A ; 179(8): 1580-1584, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31102495

RESUMEN

Infantile hereditary lower motor neuron disorders beyond 5q-spinal muscular atrophy (5q-SMA) are usually caused by mutations other than deletions or mutations in SMN1. In addition to motor neuron degeneration, further neurologic or multisystemic pathologies in non-5q-SMAs are not seldom. Some of the non-5q-SMA phenotypes, such as pontocerebellar hypoplasia (PCH1), have been classified later as a different disease group due to distinctive primary pathologies. Likewise, a novel phenotype, childhood-onset neurodegeneration with cerebellar atrophy (CONDCA) has been described recently in individuals with lower motor neuron disorder and cerebellar atrophy due to biallelic loss-of-function variants in AGTPBP1 that encodes cytosolic carboxypeptidase 1 (CCP1). Here we present two individuals with CONDCA in whom a biallelic missense AGTPBP1 variant (NM_001330701.1:c.2396G>T, p.Arg799Leu) was identified by whole exome sequencing. Affected individuals in this report correspond to the severe infantile spectrum of the disease and underline the severe pathogenic effect of this missense variant. This report is the second in the literature that delineates the pathogenic effects of biallelic AGTPBP1 variants presenting the recently described CONDCA disease.


Asunto(s)
Alelos , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Mutación , Fenotipo , Degeneraciones Espinocerebelosas/diagnóstico , Degeneraciones Espinocerebelosas/genética , Sustitución de Aminoácidos , Biomarcadores , Consanguinidad , Análisis Mutacional de ADN , Femenino , Proteínas de Unión al GTP , Estudios de Asociación Genética/métodos , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Linaje , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina , Secuenciación del Exoma
8.
Birth Defects Res ; 111(10): 591-597, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30887706

RESUMEN

BACKGROUND: The VATER/VACTERL association refers to the nonrandom co-occurrence of at least three of the following component features (CFs): vertebral defects (V), anorectal malformations (ARM) (A), cardiac defects (C), tracheoesophageal fistula with or without esophageal atresia (TE), renal malformations (R), and limb defects (L). Patients presenting with two CFs have been termed VATER/VACTERL-like phenotypes. METHODS: We surveyed the exome for recessive disease variants in three affected sib-pairs. Sib-pair 971 consisted of two brothers with ARM and additional hydronephrosis in one brother. Sib-pair 1098 consisted of two sisters with ARM. In family 1346, the daughter presented with ARM and additional hypoplasia of both small fingers and ankyloses. Her brother presented with unilateral isolated radial hypoplasia. Sib-pairs 971 and 1346 resembled a VATER/VACTERL-like phenotype. RESULTS: We detected a novel maternally inherited missense variant (c.1340G > T) and a rare paternally inherited deletion of the trans-allele in HSPA6 in both siblings of family 1346. HSPA6 belongs to the heat shock protein (HSP) 70 family. Re-sequencing of HSPA6 in 167 patients with VATER/VACTERL and VATER/VACTERL-like phenotypes did not reveal any additional bi-allelic variants. CONCLUSIONS: Until now, only TNF-receptor associated protein 1 (TRAP1) had been reported as an autosomal recessive disease-gene for the VATER/VACTERL association. TRAP1 belongs to the heat shock protein 90 family (HSP90). Both Hsp70 and Hsp90 genes have been shown to be important embryonic drivers in the formation of mouse embryonic forelimb tissue. Our results suggest HSPA6 as a new candidate gene in VATER/VACTERL-like phenotypes.


Asunto(s)
Canal Anal/anomalías , Ano Imperforado/genética , Esófago/anomalías , Proteínas HSP70 de Choque Térmico/genética , Cardiopatías Congénitas/genética , Riñón/anomalías , Deformidades Congénitas de las Extremidades/genética , Radio (Anatomía)/anomalías , Columna Vertebral/anomalías , Tráquea/anomalías , Anomalías Múltiples/genética , Alelos , Malformaciones Anorrectales/genética , Ano Imperforado/diagnóstico , Atresia Esofágica , Exoma , Femenino , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Cardiopatías Congénitas/diagnóstico , Humanos , Deformidades Congénitas de las Extremidades/diagnóstico , Masculino , Mutación , Fenotipo , Hermanos , Fístula Traqueoesofágica
9.
Am J Hum Genet ; 104(4): 749-757, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30905398

RESUMEN

Over a relatively short period of time, the clinical geneticist's "toolbox" has been expanded by machine-learning algorithms for image analysis, which can be applied to the task of syndrome identification on the basis of facial photographs, but these technologies harbor potential beyond the recognition of established phenotypes. Here, we comprehensively characterized two individuals with a hitherto unknown genetic disorder caused by the same de novo mutation in LEMD2 (c.1436C>T;p.Ser479Phe), the gene which encodes the nuclear envelope protein LEM domain-containing protein 2 (LEMD2). Despite different ages and ethnic backgrounds, both individuals share a progeria-like facial phenotype and a distinct combination of physical and neurologic anomalies, such as growth retardation; hypoplastic jaws crowded with multiple supernumerary, yet unerupted, teeth; and cerebellar intention tremor. Immunofluorescence analyses of patient fibroblasts revealed mutation-induced disturbance of nuclear architecture, recapitulating previously published data in LEMD2-deficient cell lines, and additional experiments suggested mislocalization of mutant LEMD2 protein within the nuclear lamina. Computational analysis of facial features with two different deep neural networks showed phenotypic proximity to other nuclear envelopathies. One of the algorithms, when trained to recognize syndromic similarity (rather than specific syndromes) in an unsupervised approach, clustered both individuals closely together, providing hypothesis-free hints for a common genetic etiology. We show that a recurrent de novo mutation in LEMD2 causes a nuclear envelopathy whose prognosis in adolescence is relatively good in comparison to that of classical Hutchinson-Gilford progeria syndrome, and we suggest that the application of artificial intelligence to the analysis of patient images can facilitate the discovery of new genetic disorders.


Asunto(s)
Proteínas de la Membrana/genética , Mutación , Proteínas Nucleares/genética , Progeria/genética , Adolescente , Inteligencia Artificial , Línea Celular Tumoral , Núcleo Celular , Niño , Preescolar , Diagnóstico por Computador , Cara , Fibroblastos/metabolismo , Humanos , Masculino , Tamizaje Masivo/métodos , Informática Médica , Fenotipo , Pronóstico , Síndrome
10.
Nat Commun ; 10(1): 1180, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30862798

RESUMEN

A failure in optic fissure fusion during development can lead to blinding malformations of the eye. Here, we report a syndrome characterized by facial dysmorphism, colobomatous microphthalmia, ptosis and syndactyly with or without nephropathy, associated with homozygous frameshift mutations in FAT1. We show that Fat1 knockout mice and zebrafish embryos homozygous for truncating fat1a mutations exhibit completely penetrant coloboma, recapitulating the most consistent developmental defect observed in affected individuals. In human retinal pigment epithelium (RPE) cells, the primary site for the fusion of optic fissure margins, FAT1 is localized at earliest cell-cell junctions, consistent with a role in facilitating optic fissure fusion during vertebrate eye development. Our findings establish FAT1 as a gene with pleiotropic effects in human, in that frameshift mutations cause a severe multi-system disorder whereas recessive missense mutations had been previously associated with isolated glomerulotubular nephropathy.


Asunto(s)
Blefaroptosis/genética , Cadherinas/genética , Coloboma/genética , Enfermedades Renales/genética , Microftalmía/genética , Organogénesis/genética , Sindactilia/genética , Adolescente , Adulto , Animales , Células Cultivadas , Niño , Preescolar , Análisis Mutacional de ADN , Embrión de Mamíferos , Ojo/embriología , Huesos Faciales/anomalías , Femenino , Mutación del Sistema de Lectura , Humanos , Uniones Intercelulares/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Cultivo Primario de Células , Epitelio Pigmentado de la Retina/citología , Síndrome , Secuenciación del Exoma , Adulto Joven , Pez Cebra , Proteínas de Pez Cebra/genética
11.
J Pathol ; 248(2): 230-242, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30719704

RESUMEN

We present an evolutionary analysis of the relative time of genetic events underlying tumorigenesis in human bladder cancers from 10 whole cystectomy specimens using multiregional whole-exome sequencing. We timed bladder cancer drivers, mutational signatures, ploidy and copy number alterations, provided evidence for kataegis and correlated alterations with tumour areas and histological phenotypes. We found that: (1) heterogeneous tumour areas/phenotypes had distinct driver mutations, (2) papillary-invasive tumours divided early into two parallel evolving branches and (3) parallel evolution of subclonal driver mutations occurred. APOBEC mutational signatures were found to be very early events, active in carcinoma in situ, and often remained a dominant source of mutations throughout tumour evolution. Genetic progression from carcinoma in situ followed driver mutations in NA13/FAT1, ZBTB7B or EP300/USP28/KMT2D. Our results point towards a more diverse mutational trajectory of bladder tumorigenesis and underpin the importance of timing of mutational processes and clonal architecture in bladder cancer as important aspects for successful prognostication and therapy. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma in Situ/genética , Carcinoma/genética , Secuenciación del Exoma , Heterogeneidad Genética , Transcriptoma , Neoplasias de la Vejiga Urinaria/genética , Anciano , Anciano de 80 o más Años , Carcinoma/tratamiento farmacológico , Carcinoma/patología , Carcinoma/cirugía , Carcinoma in Situ/tratamiento farmacológico , Carcinoma in Situ/patología , Carcinoma in Situ/cirugía , Cistectomía , Variaciones en el Número de Copia de ADN , Progresión de la Enfermedad , Femenino , Dosificación de Gen , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , Mutación , Invasividad Neoplásica , Fenotipo , Ploidias , Medicina de Precisión , Factores de Tiempo , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/cirugía
12.
Hum Mutat ; 39(9): 1284-1298, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29858556

RESUMEN

Spinal muscular atrophies (SMAs) are a heterogeneous group of disorders characterized by muscular atrophy, weakness, and hypotonia due to suspected lower motor neuron degeneration (LMND). In a large cohort of 3,465 individuals suspected with SMA submitted for SMN1 testing to our routine diagnostic laboratory, 48.8% carried a homozygous SMN1 deletion, 2.8% a subtle mutation, and an SMN1 deletion, whereas 48.4% remained undiagnosed. Recently, several other genes implicated in SMA/LMND have been reported. Despite several efforts to establish a diagnostic algorithm for non-5q-SMA (SMA without deletion or point mutations in SMN1 [5q13.2]), data from large-scale studies are not available. We tested the clinical utility of targeted sequencing in non-5q-SMA by developing two different gene panels. We first analyzed 30 individuals with a small panel including 62 genes associated with LMND using IonTorrent-AmpliSeq target enrichment. Then, additional 65 individuals were tested with a broader panel encompassing up to 479 genes implicated in neuromuscular diseases (NMDs) with Agilent-SureSelect target enrichment. The NMD panel provided a higher diagnostic yield (33%) than the restricted LMND panel (13%). Nondiagnosed cases were further subjected to exome or genome sequencing. Our experience supports the use of gene panels covering a broad disease spectrum for diseases that are highly heterogeneous and clinically difficult to differentiate.


Asunto(s)
Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Enfermedades Neuromusculares/diagnóstico , Patología Molecular , Adolescente , Adulto , Edad de Inicio , Niño , Preescolar , Exones/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Humanos , Lactante , Masculino , Persona de Mediana Edad , Atrofia Muscular Espinal/patología , Enfermedades Neuromusculares/genética , Enfermedades Neuromusculares/fisiopatología , Mutación Puntual , Eliminación de Secuencia , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Secuenciación del Exoma , Secuenciación Completa del Genoma , Adulto Joven
13.
Sci Rep ; 8(1): 4170, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29520014

RESUMEN

Recently, the Mucin-1 (MUC1) gene has been identified as a causal gene of autosomal dominant tubulointerstitial kidney disease (ADTKD). Most causative mutations are buried within a GC-rich 60 basepair variable number of tandem repeat (VNTR), which escapes identification by massive parallel sequencing methods due to the complexity of the VNTR. We established long read single molecule real time sequencing (SMRT) targeted to the MUC1-VNTR as an alternative strategy to the snapshot assay. Our approach allows complete VNTR assembly, thereby enabling the detection of all variants residing within the VNTR and simultaneous determination of VNTR length. We present high resolution data on the VNTR architecture for a cohort of snapshot positive (n = 9) and negative (n = 7) ADTKD families. By SMRT sequencing we could confirm the diagnosis in all previously tested cases, reconstruct both VNTR alleles and determine the exact position of the causative variant in eight of nine families. This study demonstrates that precise positioning of the causative mutation(s) and identification of other coding and noncoding sequence variants in ADTKD-MUC1 is feasible. SMRT sequencing could provide a powerful tool to uncover potential factors encoded within the VNTR that associate with intra- and interfamilial phenotype variability of MUC1 related kidney disease.


Asunto(s)
Alelos , Secuenciación de Nucleótidos de Alto Rendimiento , Repeticiones de Minisatélite , Mucina-1/genética , Riñón Poliquístico Autosómico Dominante/genética , Estudios de Cohortes , Análisis Mutacional de ADN , Femenino , Humanos , Masculino
14.
PLoS One ; 11(7): e0158692, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27391102

RESUMEN

Inherited retinal dystrophies (IRDs) are Mendelian diseases with tremendous genetic and phenotypic heterogeneity. Identification of the underlying genetic basis of these dystrophies is therefore challenging. In this study we employed whole exome sequencing (WES) in 11 families with IRDs and identified disease-causing variants in 8 of them. Sequence analysis of about 250 IRD-associated genes revealed 3 previously reported disease-associated variants in RHO, BEST1 and RP1. We further identified 5 novel pathogenic variants in RPGRIP1 (p.Ser964Profs*37), PRPF8 (p.Tyr2334Leufs*51), CDHR1 (p.Pro133Arg and c.439-17G>A) and PRPF31 (p.Glu183_Met193dup). In addition to confirming the power of WES in genetic diagnosis of IRDs, we document challenges in data analysis and show cases where the underlying genetic causes of IRDs were missed by WES and required additional techniques. For example, the mutation c.439-17G>A in CDHR1 would be rated unlikely applying the standard WES analysis. Only transcript analysis in patient fibroblasts confirmed the pathogenic nature of this variant that affected splicing of CDHR1 by activating a cryptic splice-acceptor site. In another example, a 33-base pair duplication in PRPF31 missed by WES could be identified only via targeted analysis by Sanger sequencing. We discuss the advantages and challenges of using WES to identify mutations in heterogeneous diseases like IRDs.


Asunto(s)
Exoma/genética , Mutación/genética , Distrofias Retinianas/genética , Células Cultivadas , Análisis Mutacional de ADN , Femenino , Humanos , Masculino , Linaje , Análisis de Secuencia de ADN
15.
Chem Senses ; 41(4): 313-23, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26839357

RESUMEN

Mammalian odor reception is achieved by highly specialized olfactory sensory neurons (OSNs) located in the nasal cavity. Despite their importance for the daily survival of most mammals, the gene expression and regulatory profiles of these single neurons are poorly understood. Here, we report the isolation of individual GFP-labeled OSNs from Olfr73-GFP mice at different developmental stages followed by Next Generation Sequencing, thereby analyzing the detailed transcriptome for the first time. We characterized the repertoire of olfactory receptors (ORs) and found that in addition to the highly and predominant detectable Olfr73, 20 additional ORs were stably detectable at lower transcript levels in adult mice. Additionally, OSNs collected from mice of earlier developmental stages did not show any stable OR patterns. However, more than one predominant OR per OSN was detectable.


Asunto(s)
Neuronas Receptoras Olfatorias/metabolismo , ARN/metabolismo , Animales , Femenino , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN/química , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN , Análisis de la Célula Individual
16.
PLoS One ; 10(5): e0125745, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25993413

RESUMEN

Growing evidence suggests a key role for RNA binding proteins (RBPs) in genome stability programs. Additionally, recent developments in RNA sequencing technologies, as well as mass-spectrometry techniques, have greatly expanded our knowledge on protein-RNA interactions. We here use full transcriptome sequencing and label-free LC/MS/MS to identify global changes in protein-RNA interactions in response to etoposide-induced genotoxic stress. We show that RBPs have distinct binding patterns in response to genotoxic stress and that inactivation of the RBP regulator module, p38/MK2, can affect the entire spectrum of protein-RNA interactions that take place in response to stress. In addition to validating the role of known RBPs like Srsf1, Srsf2, Elavl1 in the genotoxic stress response, we add a new collection of RBPs to the DNA damage response. We identify Khsrp as a highly regulated RBP in response to genotoxic stress and further validate its role as a driver of the G(1/)S transition through the suppression of Cdkn1a(P21) transcripts. Finally, we identify KHSRP as an indicator of overall survival, as well as disease free survival in glioblastoma multiforme.


Asunto(s)
Puntos de Control de la Fase G1 del Ciclo Celular/genética , Perfilación de la Expresión Génica/métodos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Unión al ARN/genética , ARN/genética , Transactivadores/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Animales , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Daño del ADN/genética , Supervivencia sin Enfermedad , Proteína 1 Similar a ELAV/genética , Glioblastoma/genética , Humanos , Ratones , Proteínas Nucleares/genética , Ribonucleoproteínas/genética , Factores de Empalme Serina-Arginina , Transducción de Señal/genética
17.
Nucleic Acids Res ; 43(9): 4687-700, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25870412

RESUMEN

In metazoan cells, spliced mRNAs are marked by the exon junction complex (EJC), a multi-protein complex that serves as a key regulator of post-transcriptional mRNA metabolism. Deposition of EJCs on mRNA is intimately linked to the splicing process. The spliceosomal protein CWC22 directly binds the core EJC-protein eIF4A3, guides it to the spliceosome and initiates EJC assembly. In addition, CWC22 is involved in the splicing process itself, but the molecular details of its dual function remain elusive. Here we analyze the mechanisms, by which CWC22 co-regulates pre-mRNA splicing and EJC assembly. We show that the core of CWC22 is sufficient to mediate both pre-mRNA splicing and EJC assembly. Nonetheless, both processes can be functionally uncoupled with an eIF4A3-binding deficient mutant of CWC22, which impedes EJC assembly. A C-terminal domain of CWC22 strongly enhances its spliceosomal interaction and likely regulates its function. High-throughput RNA-sequencing identifies global defects of pre-mRNA splicing and downregulation of diverse gene expression pathways in CWC22-depleted cells. We propose a model, in which CWC22 represents an integral component of the spliceosome and orchestrates pre-mRNA splicing and eIF4A3 binding to achieve global assembly of exon junction complexes.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Factor 4A Eucariótico de Iniciación/metabolismo , Exones , Proteínas Nucleares/metabolismo , Precursores del ARN/metabolismo , Empalme del ARN , ARN Mensajero/metabolismo , Empalmosomas/metabolismo , Sitios de Unión , Expresión Génica , Células HEK293 , Humanos , Intrones , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/genética , Isomerasa de Peptidilprolil , Unión Proteica , Estructura Terciaria de Proteína , Proteínas de Unión al ARN
18.
J Cell Biol ; 207(2): 213-23, 2014 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-25349259

RESUMEN

Mitochondrial function requires coordination of two genomes for protein biogenesis, efficient quality control mechanisms, and appropriate distribution of the organelles within the cell. How these mechanisms are integrated is currently not understood. Loss of the Clu1/CluA homologue (CLUH) gene led to clustering of the mitochondrial network by an unknown mechanism. We find that CLUH is coregulated both with genes encoding mitochondrial proteins and with genes involved in ribosomal biogenesis and translation. Our functional analysis identifies CLUH as a cytosolic messenger ribonucleic acid (RNA; mRNA)-binding protein. RNA immunoprecipitation experiments followed by next-generation sequencing demonstrated that CLUH specifically binds a subset of mRNAs encoding mitochondrial proteins. CLUH depletion decreased the levels of proteins translated by target transcripts and caused mitochondrial clustering. A fraction of CLUH colocalizes with tyrosinated tubulin and can be detected close to mitochondria, suggesting a role in regulating transport or translation of target transcripts close to mitochondria. Our data unravel a novel mechanism linking mitochondrial biogenesis and distribution.


Asunto(s)
Proteínas Mitocondriales/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/fisiología , Animales , Células COS , Chlorocebus aethiops , Regulación de la Expresión Génica , Ratones , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Biosíntesis de Proteínas , Proteínas de Unión al ARN/análisis , Proteínas de Unión al ARN/genética , Tubulina (Proteína)/análisis , Tubulina (Proteína)/metabolismo
19.
PLoS Genet ; 10(2): e1004110, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24516400

RESUMEN

Biogenesis of mammalian mitochondrial ribosomes requires a concerted maturation of both the small (SSU) and large subunit (LSU). We demonstrate here that the m(5)C methyltransferase NSUN4, which forms a complex with MTERF4, is essential in mitochondrial ribosomal biogenesis as mitochondrial translation is abolished in conditional Nsun4 mouse knockouts. Deep sequencing of bisulfite-treated RNA shows that NSUN4 methylates cytosine 911 in 12S rRNA (m5C911) of the SSU. Surprisingly, NSUN4 does not need MTERF4 to generate this modification. Instead, the NSUN4/MTERF4 complex is required to assemble the SSU and LSU to form a monosome. NSUN4 is thus a dual function protein, which on the one hand is needed for 12S rRNA methylation and, on the other hand interacts with MTERF4 to facilitate monosome assembly. The presented data suggest that NSUN4 has a key role in controlling a final step in ribosome biogenesis to ensure that only the mature SSU and LSU are assembled.


Asunto(s)
Proteínas Portadoras/genética , Metiltransferasas/genética , Mitocondrias/genética , ARN Ribosómico/genética , Ribosomas/genética , Animales , Proteínas Portadoras/metabolismo , Metilación de ADN/genética , Metiltransferasas/metabolismo , Ratones , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Unión Proteica , ARN Ribosómico/biosíntesis , Ribosomas/ultraestructura , Factores de Transcripción/metabolismo
20.
J Clin Pathol ; 66(9): 803-6, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23618693

RESUMEN

Due to the advanced progress in personalised therapy concepts for non-small cell lung cancer (NSCLC), we applied the ion semiconductor sequencing (ISS) approach to molecular diagnosis of NSCLC, analysing a set of therapy relevant gene loci. DNA from macrodissected tumour samples of formalin fixed biopsies was used for PCR amplification of EGFR exons 18, 19, 21 and KRAS exon 1. A total of 128 PCR products were analysed by conventional termination sequencing as well as by ISS. Sensitivity of ISS was additionally determined using 100-10 000 copies of reference mutants. All somatic mutations detected by direct Sanger sequencing were also identified by ISS. No additional mutants were detected. Running samples with limited copies of mutated alleles revealed high sensitivity, detecting less than 10% (2500 copies) mutants in a human wild type background. In conclusion, multiplexed mutation analyses by ISS is an efficient technology that can easily be linked to existing PCR approaches in molecular pathology.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Neoplasias Pulmonares/diagnóstico , Pulmón/metabolismo , Técnicas de Diagnóstico Molecular/métodos , Alelos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Formaldehído , Humanos , Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Mutación , Adhesión en Parafina , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas p21(ras) , Proteínas ras/genética , Proteínas ras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA