Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
2.
Healthcare (Basel) ; 11(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36981531

RESUMEN

Idiopathic toe walking (ITW) is a gait deviation characterized by forefoot contact with the ground, sometimes observed in children, that alters ankle kinematics, possibly leading to health-related issues. When studying foot and ankle gait deviations, the adoption of a single-segment foot model entails a significant simplification of foot and ankle movement, and thus may potentially mask some important foot dynamics. Differences in ankle kinematics between single- (conventional gait model, PiG, or Davis) and multi-segment (Oxford foot model, OFM) foot models were investigated in children with ITW. Fourteen participants were enrolled in the study and underwent instrumented gait analysis. Children were asked to walk barefoot and while wearing a foot orthosis that modified the ankle movement pattern toward a more physiological one without blocking foot intrinsic motion. ITW gait abnormalities, e.g., the absence of heel rocker and the presence of anticipated forefoot rocker, were found/not found according to the foot model. Walking conditions significantly interacted with the foot model effect. Finally, the different characterization of gait abnormalities led to a different classification of ITW, with a possible impact on the clinical evaluation. Due to its closer adhesion to ankle anatomy and to its sensitivity to ITW peculiarities, OFM may be preferable for instrumented gait analysis in this population.

3.
Micromachines (Basel) ; 14(2)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36837977

RESUMEN

Idiopathic toe walking (ITW) is a gait deviation characterized by forefoot contact with the ground and excessive ankle plantarflexion over the entire gait cycle observed in otherwise-typical developing children. The clinical evaluation of ITW is usually performed using optoelectronic systems analyzing the sagittal component of ankle kinematics and kinetics. However, in standardized laboratory contexts, these children can adopt a typical walking pattern instead of a toe walk, thus hindering the laboratory-based clinical evaluation. With these premises, measuring gait in a more ecological environment may be crucial in this population. As a first step towards adopting wearable clinical protocols embedding magneto-inertial sensors and pressure insoles, this study analyzed the performance of three algorithms for gait events identification based on shank and/or foot sensors. Foot strike and foot off were estimated from gait measurements taken from children with ITW walking barefoot and while wearing a foot orthosis. Although no single algorithm stands out as best from all perspectives, preferable algorithms were devised for event identification, temporal parameters estimate and heel and forefoot rocker identification, depending on the barefoot/shoed condition. Errors more often led to an erroneous characterization of the heel rocker, especially in shoed condition. The ITW gait specificity may cause errors in the identification of the foot strike which, in turn, influences the characterization of the heel rocker and, therefore, of the pathologic ITW behavior.

4.
Heliyon ; 8(10): e11021, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36281373

RESUMEN

Background: Idiopathic toe walking (ITW) is a gait deviation characterized by forefoot contact with the ground, possibly enhancing the risk of falling and causing Achilles' tendon shortening and psychological discomfort. Between possible treatments, foot orthosis may limit ITW when worn. With these premises, the effects of a novel foot orthosis (A.Dyn.O.®) on ankle function were analyzed in children with ITW during gait. Methods: Twenty-one children were recruited in the study after ITW diagnosis. At follow-up assessment after a habituation period of at least two weeks, participants walked in barefoot condition and while wearing A.Dyn.O.®. Kinetics and kinematics were derived from a multi-segment foot model using an optoelectronic system. Gait spatiotemporal parameters, ankle kinetic and kinematic and rockers timing were analyzed. Lastly, ITW severity was classified according to Alvarez classification. Differences between conditions were verified with paired t-test. Statistical parametric mapping was used to evaluate differences in the entire kinematic and kinetic waveforms. Findings: Wearing A.Dyn.O.®, step cadence was reduced, step length, stance phase and stride duration increased; physiological heel rocker was present, thus postponing the timing of ankle and forefoot rockers; ankle dorsiflexion angular excursion, range of motion, maximal dorsiflexor and plantarflexor moments together with maximal power absorption and production were all amplified. Interpretation: While wearing it, A.Dyn.O.® limited gait deviations typical of ITW and improved ITW severity classification for most of the participants. These findings suggest that the use of A.Dyn.O.® may assist ITW treatment, preventing children from toe walking and thus limiting its side effects.

5.
Clin Biomech (Bristol, Avon) ; 70: 177-185, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31525659

RESUMEN

BACKGROUND: Cerebral Palsy is, nowadays, the most common cause of pediatric disabilities, particularly debilitating for daily living activities. While the adoption of ankle-foot orthoses is very well established as gait treatment, the choice of the most appropriate orthotic configuration is not strongly supported by scientific evidence. The aim of this study was to develop an instrumented assessment protocol based on wearable gait analysis to support clinicians in ankle-foot orthoses configuration selection. METHODS: Ten children with spastic diplegic Cerebral Palsy were assessed (7 males, aged 4 to 11 years; all functionally classified as Gross Motor Function Classification System I or II, with clinical indication of conservative treatment through use of ankle-foot orthoses). They performed a 10Meter Walk Test in three conditions: barefoot and wearing alternatively a polypropylene hinged and solid ankle-foot orthosis accommodated in the same off-the-shelf shoe model, after 20 days of daily use of each configuration. An instrumented assessment protocol based on body-mounted magneto-inertial sensors was devised to derive spatio-temporal, gait stability and symmetry biomechanical parameters within an observational pre and post cross over design. FINDINGS: The analysis at the individual level quantitatively revealed how different patients benefited differently from the two orthoses. No general indications were obtained in favour of or against a specific configuration for the sample as a whole. INTERPRETATION: The proposed instrumented protocol represents a quantitative and useful tool to support the clinical selection of an appropriate orthotic treatment and, potentially, in evaluating its effectiveness.


Asunto(s)
Tobillo/fisiopatología , Parálisis Cerebral/fisiopatología , Parálisis Cerebral/rehabilitación , Ortesis del Pié , Pie/fisiopatología , Análisis de la Marcha , Trastornos Neurológicos de la Marcha/fisiopatología , Niño , Preescolar , Estudios Cruzados , Femenino , Marcha , Humanos , Masculino , Zapatos , Dispositivos Electrónicos Vestibles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA