Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Methods Mol Biol ; 2822: 39-50, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38907910

RESUMEN

RT-LAMP is an effective alternative to RT-PCR-based diagnostics, offering high specificity, sensitivity, and rapid results. One notable advantage is the robustness of its enzymes, allowing for direct amplification from crude samples without the need for prior isolation of RNA. Colorimetric LAMP is particularly attractive as it eliminates the need for complex instrumentation, making it suitable for point-of-care applications. Here, we present a comprehensive step-by-step protocol for establishing an RT-LAMP-based test for direct detection of SARS-CoV-2 genomic RNA in saliva samples using different colorimetric detection methods. Importantly, this versatile test can be easily adapted to detect emerging pathogens.


Asunto(s)
COVID-19 , Colorimetría , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , ARN Viral , SARS-CoV-2 , Saliva , Saliva/virología , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Colorimetría/métodos , ARN Viral/genética , ARN Viral/aislamiento & purificación , ARN Viral/análisis , Humanos , COVID-19/diagnóstico , COVID-19/virología , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos , Prueba de Ácido Nucleico para COVID-19/métodos , Sensibilidad y Especificidad
2.
Biol Methods Protoc ; 9(1): bpae035, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835855

RESUMEN

The gold standard for coronavirus disease 2019 diagnostic testing relies on RNA extraction from naso/oropharyngeal swab followed by amplification through reverse transcription-polymerase chain reaction (RT-PCR) with fluorogenic probes. While the test is extremely sensitive and specific, its high cost and the potential discomfort associated with specimen collection made it suboptimal for public health screening purposes. In this study, we developed an equally reliable, but cheaper and less invasive alternative test based on a one-step RT-PCR with the DNA-intercalating dye SYBR Green, which enables the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly from saliva samples or RNA isolated from nasopharyngeal (NP) swabs. Importantly, we found that this type of testing can be fine-tuned to discriminate SARS-CoV-2 variants of concern. The saliva RT-PCR SYBR Green test was successfully used in a mass-screening initiative targeting nearly 4500 asymptomatic children under the age of 12. Testing was performed at a reasonable cost, and in some cases, the saliva test outperformed NP rapid antigen tests in identifying infected children. Whole genome sequencing revealed that the antigen testing failure could not be attributed to a specific lineage of SARS-CoV-2. Overall, this work strongly supports the view that RT-PCR saliva tests based on DNA-intercalating dyes represent a powerful strategy for community screening of SARS-CoV-2. The tests can be easily applied to other infectious agents and, therefore, constitute a powerful resource for an effective response to future pandemics.

3.
J Patient Saf ; 19(1): 48-58, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35948319

RESUMEN

OBJECTIVE: This study aimed to map the evidence available on patient safety training programs for health professionals. METHODS: A scoping review was carried out. Several studies published between January 2010 and March 2020 in the following databases were investigated: CINAHL; MEDLINE; Nursing & Allied Health Collection: Comprehensive; Cochrane Central Register of Controlled Trials; Cochrane Database of Systematic Reviews; Cochrane; MedicLatina , via EBSCOhost; World Health Organization; Google Scholar; BVS- Biblioteca Virtual da Saúde ; PubMed; B-On; and RCAAP- Repositórios Científicos de Acesso Aberto de Portugal . RESULTS: A total of 2841 articles were found, 7 were included. Most studies report that the development of patient safety programs for health care professionals provides them with tools and techniques to recognize adverse incidents induced by the professional system/practice; recognize human factors related to patient safety, such as nontechnical skills or tiredness; understand high-risk clinical processes; develop strategies that influence and enhance patient safety culture; promote communication, teamwork, and organizational culture concerning patient safety; analyze other characteristic and emerging topics in patient safety; and develop project proposals to improve patient safety, allowing health care professionals to consolidate their knowledge, leading initiatives to improve patient safety. CONCLUSIONS: There are still few studies that test patient safety training programs, which is a concern given the importance of implementing safe practices. The existing evidence proves the efficacy of the training programs in improving patient safety, although there are some gaps.


Asunto(s)
Personal de Salud , Seguridad del Paciente , Humanos , Revisiones Sistemáticas como Asunto , Comunicación , Portugal
4.
Front Microbiol ; 13: 920574, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774458

RESUMEN

The synergistic combinations of drugs are promising strategies to boost the effectiveness of current antifungals and thus prevent the emergence of resistance. In this work, we show that copper and the antifungal fluconazole act synergistically against Candida glabrata, an opportunistic pathogenic yeast intrinsically tolerant to fluconazole. Analyses of the transcriptomic profile of C. glabrata after the combination of copper and fluconazole showed that the expression of the multidrug transporter gene CDR1 was decreased, suggesting that fluconazole efflux could be affected. In agreement, we observed that copper inhibits the transactivation of Pdr1, the transcription regulator of multidrug transporters and leads to the intracellular accumulation of fluconazole. Copper also decreases the transcriptional induction of ergosterol biosynthesis (ERG) genes by fluconazole, which culminates in the accumulation of toxic sterols. Co-treatment of cells with copper and fluconazole should affect the function of proteins located in the plasma membrane, as several ultrastructural alterations, including irregular cell wall and plasma membrane and loss of cell wall integrity, were observed. Finally, we show that the combination of copper and fluconazole downregulates the expression of the gene encoding the zinc-responsive transcription regulator Zap1, which possibly, together with the membrane transporters malfunction, generates zinc depletion. Supplementation with zinc reverts the toxic effect of combining copper with fluconazole, underscoring the importance of this metal in the observed synergistic effect. Overall, this work, while unveiling the molecular basis that supports the use of copper to enhance the effectiveness of fluconazole, paves the way for the development of new metal-based antifungal strategies.

5.
Sci Rep ; 11(1): 16430, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34385527

RESUMEN

Until there is an effective implementation of COVID-19 vaccination program, a robust testing strategy, along with prevention measures, will continue to be the most viable way to control disease spread. Such a strategy should rely on disparate diagnostic tests to prevent a slowdown in testing due to lack of materials and reagents imposed by supply chain problems, which happened at the beginning of the pandemic. In this study, we have established a single-tube test based on RT-LAMP that enables the visual detection of less than 100 viral genome copies of SARS-CoV-2 within 30 min. We benchmarked the assay against the gold standard test for COVID-19 diagnosis, RT-PCR, using 177 nasopharyngeal RNA samples. For viral loads above 100 copies, the RT-LAMP assay had a sensitivity of 100% and a specificity of 96.1%. Additionally, we set up a RNA extraction-free RT-LAMP test capable of detecting SARS-CoV-2 directly from saliva samples, albeit with lower sensitivity. The saliva was self-collected and the collection tube remained closed until inactivation, thereby ensuring the protection of the testing personnel. As expected, RNA extraction from saliva samples increased the sensitivity of the test. To lower the costs associated with RNA extraction, we performed this step using an alternative protocol that uses plasmid DNA extraction columns. We also produced the enzymes needed for the assay and established an in-house-made RT-LAMP test independent of specific distribution channels. Finally, we developed a new colorimetric method that allowed the detection of LAMP products by the visualization of an evident color shift, regardless of the reaction pH.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/virología , Colorimetría/métodos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , SARS-CoV-2/aislamiento & purificación , COVID-19/diagnóstico , Humanos , Pandemias , Portugal/epidemiología , ARN Viral/genética , SARS-CoV-2/genética , Saliva/química , Saliva/virología , Sensibilidad y Especificidad
6.
Microorganisms ; 9(6)2021 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-34203091

RESUMEN

In yeast, iron storage and detoxification depend on the Ccc1 transporter that mediates iron accumulation in vacuoles. While deletion of the CCC1 gene renders cells unable to survive under iron overload conditions, the deletion of its previously identified regulators only partially affects survival, indicating that the mechanisms controlling iron storage and detoxification in yeast are still far from well understood. This work reveals that CCC1 is equipped with a complex transcriptional structure comprising several regulatory regions. One of these is located inside the coding sequence of the gene and drives the expression of a short transcript encoding an N-terminally truncated protein, designated as s-Ccc1. s-Ccc1, though less efficiently than Ccc1, is able to promote metal accumulation in the vacuole, protecting cells against iron toxicity. While the expression of the s-Ccc1 appears to be repressed in the normal genomic context, our current data clearly demonstrates that it is functional and has the capacity to play a role under iron overload conditions.

7.
Microb Cell ; 6(6): 267-285, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31172012

RESUMEN

Yeast adaptation to stress has been extensively studied. It involves large reprogramming of genome expression operated by many, more or less specific, transcription factors. Here, we review our current knowledge on the function of the eight Yap transcription factors (Yap1 to Yap8) in Saccharomyces cerevisiae, which were shown to be involved in various stress responses. More precisely, Yap1 is activated under oxidative stress, Yap2/Cad1 under cadmium, Yap4/Cin5 and Yap6 under osmotic shock, Yap5 under iron overload and Yap8/Arr1 by arsenic compounds. Yap3 and Yap7 seem to be involved in hydroquinone and nitrosative stresses, respectively. The data presented in this article illustrate how much knowledge on the function of these Yap transcription factors is advanced. The evolution of the Yap family and its roles in various pathogenic and non-pathogenic fungal species is discussed in the last section.

8.
FEBS J ; 285(10): 1861-1872, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29604179

RESUMEN

In the yeast Saccharomyces cerevisiae Aft1, the low iron-sensing transcription factor is known to regulate the expression of the FET3 gene. However, we found that a strain-lacking FET3 is more sensitive to copper excess than a strain-lacking AFT1, and accordingly, FET3 expression is not fully compromised in the latter. These findings suggest that, under such conditions, another regulator comes into play and controls FET3 expression. In this work, we identify Ace1, the regulator of copper detoxification genes, as a regulator of FET3. We suggest that the activation of FET3 by Ace1 prevents the hyper activation of Aft1, possibly by assuring the adequate functioning of mitochondrial iron-sulfur cluster biogenesis. While reinforcing the link between iron and copper homeostasis, this work unveils a novel protection mechanism against copper toxicity mediated by Ace1, which relies in the activation of FET3 and results in the restriction of Aft1 activity as a means to prevent excessive copper accumulation.


Asunto(s)
Ceruloplasmina/metabolismo , Cobre/metabolismo , Proteínas de Unión al ADN/fisiología , Inactivación Metabólica/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Ceruloplasmina/genética , Cobre/toxicidad , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Homeostasis , Hierro/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
Biochim Biophys Acta Gene Regul Mech ; 1860(4): 472-481, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28188921

RESUMEN

Response to arsenic stress in Saccharomyces cerevisiae is orchestrated by the regulatory protein Yap8, which mediates transcriptional activation of ACR2 and ACR3. This study contributes to the state of art knowledge of the molecular mechanisms underlying yeast stress response to arsenate as it provides the genetic and biochemical evidences that Yap8, through cysteine residues 132, 137, and 274, is the sensor of presence of arsenate in the cytosol. Moreover, it is here reported for the first time the essential role of the Mediator complex in the transcriptional activation of ACR2 by Yap8. Based on our data, we propose an order-of-function map to recapitulate the sequence of events taking place in cells injured with arsenate. Modification of the sulfhydryl state of these cysteines converts Yap8 in its activated form, triggering the recruitment of the Mediator complex to the ACR2/ACR3 promoter, through the interaction with the tail subunit Med2. The Mediator complex then transfers the regulatory signals conveyed by Yap8 to the core transcriptional machinery, which culminates with TBP occupancy, ACR2 upregulation and cell adaptation to arsenate stress. Additional co-factors are required for the transcriptional activation of ACR2 by Yap8, particularly the nucleosome remodeling activity of SWI/SNF and SAGA complexes.


Asunto(s)
Arseniato Reductasas/genética , Arseniatos/toxicidad , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Complejo Mediador/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Activación Transcripcional/genética , Arseniato Reductasas/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , Cisteína/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Subunidades de Proteína/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Estrés Fisiológico/efectos de los fármacos
10.
Biochim Biophys Acta ; 1849(12): 1385-97, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26470684

RESUMEN

Response to hyperosmotic stress in the yeast Saccharomyces cerevisiae involves the participation of the general stress response mediated by Msn2/4 transcription factors and the HOG pathway. One of the transcription factors activated through this pathway is Hot1, which contributes to the control of the expression of several genes involved in glycerol synthesis and flux, or in other functions related to adaptation to adverse conditions. This work provides new data about the interaction mechanism of this transcription factor with DNA. By means of one-hybrid and electrophoretic mobility assays, we demonstrate that the C-terminal region, which corresponds to amino acids 610-719, is the DNA-binding domain of Hot1. We also describe how this domain recognizes sequence 5'-GGGACAAA-3' located in the promoter of gene STL1. The bioinformatics analysis carried out in this work allowed the identification of identical or similar sequences (with up to two mismatches) in the promoter of other Hot1 targets, where central element GGACA was quite conserved among them. Finally, we found that small variations in the sequence recognized by Hot1 may influence its ability to recognize its targets in vivo.


Asunto(s)
ADN de Hongos/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Transporte de Membrana/genética , Regiones Promotoras Genéticas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Simulación por Computador , Secuencia Conservada , ADN de Hongos/genética , Genes Fúngicos , Datos de Secuencia Molecular , Mutación , Osmorregulación/genética , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Eliminación de Secuencia , Homología de Secuencia de Aminoácido
11.
FEBS Open Bio ; 5: 594-604, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26273559

RESUMEN

Desulfovibrio gigas belongs to the group of sulfate reducing bacteria (SRB). These ubiquitous and metabolically versatile microorganisms are often exposed to reactive nitrogen species (RNS). Nonetheless, the mechanisms and regulatory elements involved in nitrosative stress protection are still poorly understood. The transcription factor HcpR has emerged as a putative regulator of nitrosative stress response among anaerobic bacteria. HcpR is known to orchestrate the expression of the hybrid cluster protein gene, hcp, proposed to be involved in cellular defense against RNS. According to phylogenetic analyses, the occurrence of hcpR paralog genes is a common feature among several Desulfovibrio species. Within the D. gigas genome we have identified two HcpR-related sequences. One of these sequences, hcpR1, was found in the close vicinity of the hcp gene and this finding prompted us to proceed with its functional characterization. We observed that the growth of a D. gigas strain lacking hcpR1 is severely impaired under nitrosative stress. An in silico search revealed several putative targets of HcpR1 that were experimentally validated. The fact that HcpR1 regulates several genes encoding proteins involved in nitrite and nitrate metabolism, together with the sensitive growth phenotype to NO displayed by an hcpR1 mutant strain, strongly supports a relevant role of this factor under nitrosative stress. Moreover, the finding that several Desulfovibrio species possess HcpR paralogs, which have been transmitted vertically in the evolution and diversification of the genus, suggests that these sequences may confer adaptive or survival advantage to these organisms, possibly by increasing their tolerance to nitrosative stress.

12.
FEBS Lett ; 589(19 Pt B): 2841-9, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26296316

RESUMEN

Yap2 is a cadmium responsive transcription factor that interacts with MAPK-activated protein (MAPKAP) kinase Rck1. We show that Rck1 deletion confers protection against cadmium toxicity and that the mechanism underlying this observation relies on Yap2. Rck1 removal from the yeast genome potentiates Yap2 activity by increasing protein half-life and delaying its nuclear export. As a consequence, several Yap2 antioxidant targets are over-activated by a mechanism that also requires Yap1. Several genes of the cell wall integrity (CWI) pathway are upregulated under cadmium stress in a Yap2 dependent way. We showed that deletion of CWI genes renders yeast cells more sensitive to cadmium. These findings led us to suggest that in response to cadmium stress Yap2 may serve a dual purpose: oxidative stress attenuation and cell wall maintenance.


Asunto(s)
Cadmio/toxicidad , Contaminantes Ambientales/toxicidad , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Antioxidantes/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Pared Celular/efectos de los fármacos , Pared Celular/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Mutación , Estrés Oxidativo/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Estabilidad Proteica/efectos de los fármacos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética
13.
J Biol Chem ; 290(30): 18584-95, 2015 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-26063801

RESUMEN

Cadmium is a well known mutagenic metal that can enter cells via nonspecific metal transporters, causing several cellular damages and eventually leading to death. In the yeast Saccharomyces cerevisiae, the transcription factor Yap1 plays a key role in the regulation of several genes involved in metal stress response. We have previously shown that Yap1 represses the expression of FET4, a gene encoding a low affinity iron transporter able to transport metals other than iron. Here, we have studied the relevance of this repression in cell tolerance to cadmium. Our results indicate that genomic deletion of Yap1 increases FET4 transcript and protein levels. In addition, the cadmium toxicity exhibited by this strain is completely reversed by co-deletion of FET4 gene. These data correlate well with the increased intracellular levels of cadmium observed in the mutant yap1. Rox1, a well known aerobic repressor of hypoxic genes, conveys the Yap1-mediated repression of FET4. We further show that, in a scenario where the activity of Yap1 or Rox1 is compromised, cells activate post-transcriptional mechanisms, involving the exoribonuclease Xrn1, to compensate the derepression of FET4. Our data thus reveal a novel protection mechanism against cadmium toxicity mediated by Yap1 that relies on the aerobic repression of FET4 and results in the impairment of cadmium uptake.


Asunto(s)
Cadmio/metabolismo , Proteínas de Transporte de Catión/biosíntesis , Proteínas de Unión a Hierro/biosíntesis , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo , Transporte Biológico/genética , Cadmio/toxicidad , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Proteínas Transportadoras de Cobre , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Exorribonucleasas/metabolismo , Regulación Fúngica de la Expresión Génica , Hierro/metabolismo , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Mutación , Proteínas Represoras/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
14.
PLoS One ; 8(12): e83328, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24358276

RESUMEN

In Saccharomyces cerevisiae, the transcription factor Yap8 is a key determinant in arsenic stress response. Contrary to Yap1, another basic region-leucine zipper (bZIP) yeast regulator, Yap8 has a very restricted DNA-binding specificity and only orchestrates the expression of ACR2 and ACR3 genes. In the DNA-binding basic region, Yap8 has three distinct amino acids residues, Leu26, Ser29 and Asn31, at sites of highly conserved positions in the other Yap family of transcriptional regulators and Pap1 of Schizosaccharomyces pombe. To evaluate whether these residues are relevant to Yap8 specificity, we first built a homology model of the complex Yap8bZIP-DNA based on Pap1-DNA crystal structure. Several Yap8 mutants were then generated in order to confirm the contribution of the residues predicted to interact with DNA. Using bioinformatics analysis together with in vivo and in vitro approaches, we have identified several conserved residues critical for Yap8-DNA binding. Moreover, our data suggest that Leu26 is required for Yap8 binding to DNA and that this residue together with Asn31, hinder Yap1 response element recognition by Yap8, thus narrowing its DNA-binding specificity. Furthermore our results point to a role of these two amino acids in the stability of the Yap8-DNA complex.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , ADN/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Secuencia Conservada , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Asociadas a Pancreatitis , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Elementos de Respuesta , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Homología de Secuencia , Factores de Transcripción/genética
16.
Yeast ; 26(12): 641-53, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19774548

RESUMEN

Yap4 is a nuclear-resident transcription factor induced in Saccharomyces cerevisiae when exposed to several stress conditions, which include mild hyperosmotic and oxidative stress, temperature shift or metal exposure. This protein is also phosphorylated. Here we report that this modification is driven by PKA and GSK3. In order to ascertain whether Yap4 is directly or indirectly phosphorylated by PKA, we searched for stress and PKA-related kinases that could phosphorylate Yap4. We show that phosphorylation is independent of the kinases Rim15, Yak1, Sch9, Slt2, Ste20 and Ptk2. In addition, we showed that Yap4 phosphorylation is also abrogated in the triple GSK3 mutant mck1 rim11 yol128c. Furthermore, our data reveal that Yap4 nuclear localization is independent of its phosphorylation state. This protein has several putative phosphorylation sites, but only the mutation of residues T192 and S196 impairs its phosphorylation under different stress conditions. The ability of the non-phosphorylated forms of Yap4 to partially rescue the hog1 severe sensitivity phenotype is not affected, suggesting that Yap4 activity is maintained in the absence of phosphorylation. However, this modification seems to be required for stability of the protein, as the non-phosphorylated form has a shorter half-life than the phosphorylated one.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Sustitución de Aminoácidos , Secuencia de Bases , Sitios de Unión/genética , Núcleo Celular/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Cartilla de ADN/genética , Genes Fúngicos , Glucógeno Sintasa Quinasa 3/genética , Mutagénesis Sitio-Dirigida , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilación , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Estrés Fisiológico , Factores de Transcripción/química , Factores de Transcripción/genética
17.
Biochem J ; 414(2): 301-11, 2008 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-18439143

RESUMEN

In the budding yeast Saccharomyces cerevisiae, arsenic detoxification involves the activation of Yap8, a member of the Yap (yeast AP-1-like) family of transcription factors, which in turn regulates ACR2 and ACR3, genes encoding an arsenate reductase and a plasma-membrane arsenite-efflux protein respectively. In addition, Yap1 is involved in the arsenic adaptation process through regulation of the expression of the vacuolar pump encoded by YCF1 (yeast cadmium factor 1 gene) and also contributing to the regulation of ACR genes. Here we show that Yap1 is also involved in the removal of ROS (reactive oxygen species) generated by arsenic compounds. Data on lipid peroxidation and intracellular oxidation indicate that deletion of YAP1 and YAP8 triggers cellular oxidation mediated by inorganic arsenic. In spite of the increased amounts of As(III) absorbed by the yap8 mutant, the enhanced transcriptional activation of the antioxidant genes such as GSH1 (gamma- glutamylcysteine synthetase gene), SOD1 (superoxide dismutase 1 gene) and TRX2 (thioredoxin 2 gene) may prevent protein oxidation. In contrast, the yap1 mutant exhibits high contents of protein carbonyl groups and the GSSG/GSH ratio is severely disturbed on exposure to arsenic compounds in these cells. These results point to an additional level of Yap1 contribution to arsenic stress responses by preventing oxidative damage in cells exposed to these compounds. Transcriptional profiling revealed that genes of the functional categories related to sulphur and methionine metabolism and to the maintenance of cell redox homoeostasis are activated to mediate adaptation of the wild-type strain to 2 mM arsenate treatment.


Asunto(s)
Arsénico/farmacología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/efectos de los fármacos , Factores de Transcripción/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Northern Blotting , Western Blotting , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Glutamato-Cisteína Ligasa/genética , Glutamato-Cisteína Ligasa/metabolismo , Glutatión/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Microscopía Fluorescente , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
FEBS Lett ; 566(1-3): 141-6, 2004 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-15147884

RESUMEN

Yap8p, a member of the Saccharomyces cerevisiae Yap family, is activated in response to arsenic. Both the mechanisms by which this activation takes place and its regulation have not yet been identified. In this report, we show that Yap8p is not activated at the transcriptional level but, rather, its nuclear transport is actively regulated and dependent on the exportin chromosome region maintenance protein. In addition, it is shown that Cys(132), Cys(137)and Cys(274) are essential for Yap8p localization and transactivation function both of which are required for its biological activity.


Asunto(s)
Arsénico/farmacología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Northern Blotting , Proteínas Portadoras/metabolismo , Núcleo Celular/metabolismo , Cisteína/genética , Eliminación de Gen , Genotipo , Microscopía Fluorescente , Datos de Secuencia Molecular , Fenotipo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Activación Transcripcional/efectos de los fármacos
19.
FEBS Lett ; 567(1): 80-5, 2004 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-15165897

RESUMEN

Yeast, and especially Saccharomyces cerevisiae, are continuously exposed to rapid and drastic changes in their external milieu. Therefore, cells must maintain their homeostasis, which is achieved through a highly coordinated gene expression involving a plethora of transcription factors, each of them performing specific functions. Here, we discuss recent advances in our understanding of the function of the yeast activator protein family of eight basic-leucine zipper trans-activators that have been implicated in various forms of stress response.


Asunto(s)
Proteínas Fúngicas/fisiología , Estrés Oxidativo , Secuencia de Aminoácidos , Proteínas Fúngicas/química , Regulación Fúngica de la Expresión Génica , Modelos Biológicos , Datos de Secuencia Molecular , Familia de Multigenes , Presión Osmótica , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA