RESUMEN
Monoacylglycerol lipase (MAGL) is the key enzyme for the hydrolysis of endocannabinoid 2-arachidonoylglycerol (2-AG). The central role of MAGL in the metabolism of 2-AG makes it an attractive therapeutic target for a variety of disorders, including inflammation-induced tissue injury, pain, multiple sclerosis, and cancer. Previously, we reported LEI-515, an aryl sulfoxide, as a peripherally restricted, covalent reversible MAGL inhibitor that reduced neuropathic pain and inflammation in preclinical models. Here, we describe the structure-activity relationship (SAR) of aryl sulfoxides as MAGL inhibitors that led to the identification of LEI-515. Optimization of the potency of high-throughput screening (HTS) hit 1 yielded compound ±43. However, ±43 was not metabolically stable due to its ester moiety. Replacing the ester group with α-CF2 ketone led to the identification of compound ±73 (LEI-515) as a metabolically stable MAGL inhibitor with subnanomolar potency. LEI-515 is a promising compound to harness the therapeutic potential of MAGL inhibition.
Asunto(s)
Inhibidores Enzimáticos , Monoacilglicerol Lipasas , Sulfóxidos , Monoacilglicerol Lipasas/antagonistas & inhibidores , Monoacilglicerol Lipasas/metabolismo , Relación Estructura-Actividad , Humanos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Sulfóxidos/química , Sulfóxidos/farmacología , Sulfóxidos/síntesis química , Animales , Microsomas Hepáticos/metabolismo , Ensayos Analíticos de Alto RendimientoRESUMEN
Monoacylglycerol lipase (MAGL) regulates endocannabinoid 2-arachidonoylglycerol (2-AG) and eicosanoid signalling. MAGL inhibition provides therapeutic opportunities but clinical potential is limited by central nervous system (CNS)-mediated side effects. Here, we report the discovery of LEI-515, a peripherally restricted, reversible MAGL inhibitor, using high throughput screening and a medicinal chemistry programme. LEI-515 increased 2-AG levels in peripheral organs, but not mouse brain. LEI-515 attenuated liver necrosis, oxidative stress and inflammation in a CCl4-induced acute liver injury model. LEI-515 suppressed chemotherapy-induced neuropathic nociception in mice without inducing cardinal signs of CB1 activation. Antinociceptive efficacy of LEI-515 was blocked by CB2, but not CB1, antagonists. The CB1 antagonist rimonabant precipitated signs of physical dependence in mice treated chronically with a global MAGL inhibitor (JZL184), and an orthosteric cannabinoid agonist (WIN55,212-2), but not with LEI-515. Our data support targeting peripheral MAGL as a promising therapeutic strategy for developing safe and effective anti-inflammatory and analgesic agents.
Asunto(s)
Monoacilglicerol Lipasas , Monoglicéridos , Animales , Ratones , Rimonabant , Endocannabinoides , Analgésicos/farmacología , Receptor Cannabinoide CB1 , Ratones Endogámicos C57BLRESUMEN
Macrocyclisation provides a means of stabilising the conformation of peptides, often resulting in improved stability, selectivity, affinity, and cell permeability. In this work, a new approach to peptide macrocyclisation is reported, using a cyanobenzothiazole-containing amino acid that can be incorporated into peptides by both inâ vitro translation and solid phase peptide synthesis, meaning it should be applicable to peptide discovery by mRNA display. This cyclisation proceeds rapidly, with minimal by-products, is selective over other amino acids including non N-terminal cysteines, and is compatible with further peptide elaboration exploiting such an additional cysteine in bicyclisation and derivatisation reactions. Molecular dynamics simulations show that the new cyclisation group is likely to influence the peptide conformation as compared to previous thioether-based approaches, through rigidity and intramolecular aromatic interactions, illustrating their complementarity.