Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Intensive Care Med Exp ; 9(1): 43, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34476621

RESUMEN

BACKGROUND: Progranulin is a widely expressed pleiotropic growth factor with a central regulatory effect during the early immune response in sepsis. Progranulin signaling has not been systematically studied and compared between sepsis, community-acquired pneumonia (CAP), COVID-19 pneumonia and a sterile systemic inflammatory response (SIRS). We delineated molecular networks of progranulin signaling by next-generation sequencing (NGS), determined progranulin plasma concentrations and quantified the diagnostic performance of progranulin to differentiate between the above-mentioned disorders using the established biomarkers procalcitonin (PCT), interleukin-6 (IL-6) and C-reactive protein (CRP) for comparison. METHODS: The diagnostic performance of progranulin was operationalized by calculating AUC and ROC statistics for progranulin and established biomarkers in 241 patients with sepsis, 182 patients with SIRS, 53 patients with CAP, 22 patients with COVID-19 pneumonia and 53 healthy volunteers. miRNAs and mRNAs in blood cells from sepsis patients (n = 7) were characterized by NGS and validated by RT-qPCR in an independent cohort (n = 39) to identify canonical gene networks associated with upregulated progranulin at sepsis onset. RESULTS: Plasma concentrations of progranulin (ELISA) in patients with sepsis were 57.5 (42.8-84.9, Q25-Q75) ng/ml and significantly higher than in CAP (38.0, 33.5-41.0 ng/ml, p < 0.001), SIRS (29.0, 25.0-35.0 ng/ml, p < 0.001) and the healthy state (28.7, 25.5-31.7 ng/ml, p < 0.001). Patients with COVID-19 had significantly higher progranulin concentrations than patients with CAP (67.6, 56.6-96.0 vs. 38.0, 33.5-41.0 ng/ml, p < 0.001). The diagnostic performance of progranulin for the differentiation between sepsis vs. SIRS (n = 423) was comparable to that of procalcitonin. AUC was 0.90 (95% CI = 0.87-0.93) for progranulin and 0.92 (CI = 0.88-0.96, p = 0.323) for procalcitonin. Progranulin showed high discriminative power to differentiate bacterial CAP from COVID-19 (sensitivity 0.91, specificity 0.94, AUC 0.91 (CI = 0.8-1.0) and performed significantly better than PCT, IL-6 and CRP. NGS and partial RT-qPCR confirmation revealed a transcriptomic network of immune cells with upregulated progranulin and sortilin transcripts as well as toll-like-receptor 4 and tumor-protein 53, regulated by miR-16 and others. CONCLUSIONS: Progranulin signaling is elevated during the early antimicrobial response in sepsis and differs significantly between sepsis, CAP, COVID-19 and SIRS. This suggests that progranulin may serve as a novel indicator for the differentiation between these disorders. TRIAL REGISTRATION: Clinicaltrials.gov registration number NCT03280576 Registered November 19, 2015.

2.
Development ; 148(17)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34486651

RESUMEN

The morphogenesis of left-right (LR) asymmetry is a crucial phase of organogenesis. In the digestive tract, the development of anatomical asymmetry is first evident in the leftward curvature of the stomach. To elucidate the molecular events that shape this archetypal laterality, we performed transcriptome analyses of the left versus right sides of the developing stomach in frog embryos. Besides the known LR gene pitx2, the only gene found to be expressed asymmetrically throughout all stages of curvature was single-minded 2 (sim2), a Down Syndrome-related transcription factor and homolog of a Drosophila gene (sim) required for LR asymmetric looping of the fly gut. We demonstrate that sim2 functions downstream of LR patterning cues to regulate key cellular properties and behaviors in the left stomach epithelium that drive asymmetric curvature. Our results reveal unexpected convergent cooption of single-minded genes during the evolution of LR asymmetric morphogenesis, and have implications for dose-dependent roles of laterality factors in non-laterality-related birth defects.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Morfogénesis , Estómago/embriología , Animales , Anuros , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Tipificación del Cuerpo , Embrión no Mamífero , Endodermo/embriología , Endodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína del Homeodomínio PITX2
3.
Cold Spring Harb Protoc ; 2019(6)2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-30150318

RESUMEN

Analysis of the molecular mechanisms driving cell specification, differentiation, and other cellular processes can be difficult due to the heterogeneity of tissues and organs. Therefore, it is critical to isolate pure cell populations in order to properly assess the function of certain cell types in the context of a tissue. This protocol describes use of the INTACT (isolation of nuclei tagged in specific cell types) method in Xenopus, followed by proteomics analysis of nuclear protein complexes. The INTACT protocol utilizes two transgenes: (1) a three-part nuclear targeting fusion (NTF) consisting of a nuclear envelope protein (Nup35) that targets the NTF to the nuclear membrane, an enhanced green fluorescent protein (EGFP) cassette for NTF visualization in live animals, and a biotin ligase receptor protein (BLRP) that provides a substrate for the biotinylation of the NTF, and (2) the E. coli ligase BirA (which biotinylates the NTF) tagged to mCherry (for visualization). Either or both transgenes are driven by a tissue-specific promoter, making this protocol easily adaptable to proteomics analyses of immunoprecipitated complexes from INTACT-isolated nuclei of multiple tissue types to determine the composition of protein complexes in pure cell populations.


Asunto(s)
Núcleo Celular/metabolismo , Proteómica/métodos , Proteínas de Xenopus/metabolismo , Xenopus/metabolismo , Animales , Cromatografía de Afinidad
4.
Dev Biol ; 439(2): 80-91, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29709601

RESUMEN

Internal organs exhibit left-right asymmetric sizes, shapes and anatomical positions, but how these different lateralities develop is poorly understood. Here we use the experimentally tractable Xenopus model to uncover the morphogenetic events that drive the left-right asymmetrical lobation of the liver. On the right side of the early hepatic diverticulum, endoderm cells become columnar and apically constricted, forming an expanded epithelial surface and, ultimately, an enlarged right liver lobe. In contrast, the cells on the left side become rounder, and rearrange into a compact, stratified architecture that produces a smaller left lobe. Side-specific gain- and loss-of-function studies reveal that asymmetric expression of the left-right determinant Pitx2c elicits distinct epithelial morphogenesis events in the left side of the diverticulum. Surprisingly, the cellular events induced by Pitx2c during liver development are opposite those induced in other digestive organs, suggesting divergent cellular mechanisms underlie the formation of different lateralities.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Hígado/embriología , Proteínas de Xenopus/metabolismo , Xenopus/embriología , Animales , Tipificación del Cuerpo/genética , Divertículo/embriología , Divertículo/metabolismo , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio/fisiología , Hígado/fisiología , Morfogénesis/fisiología , Factores de Transcripción/metabolismo , Xenopus/fisiología , Proteínas de Xenopus/fisiología
5.
Development ; 144(8): 1477-1483, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28242610

RESUMEN

Left-right (LR) asymmetry is a fundamental feature of internal anatomy, yet the emergence of morphological asymmetry remains one of the least understood phases of organogenesis. Asymmetric rotation of the intestine is directed by forces outside the gut, but the morphogenetic events that generate anatomical asymmetry in other regions of the digestive tract remain unknown. Here, we show in mouse and Xenopus that the mechanisms that drive the curvature of the stomach are intrinsic to the gut tube itself. The left wall of the primitive stomach expands more than the right wall, as the left epithelium becomes more polarized and undergoes radial rearrangement. These asymmetries exist across several species, and are dependent on LR patterning genes, including Foxj1, Nodal and Pitx2 Our findings have implications for how LR patterning manifests distinct types of morphological asymmetries in different contexts.


Asunto(s)
Tipificación del Cuerpo , Estómago/anatomía & histología , Estómago/embriología , Animales , Endodermo/embriología , Endodermo/metabolismo , Epitelio/embriología , Epitelio/metabolismo , Proteínas de Homeodominio/metabolismo , Ratones , Rotación , Transducción de Señal , Factores de Transcripción/metabolismo , Xenopus/embriología , Proteína del Homeodomínio PITX2
6.
Dev Biol ; 405(2): 291-303, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26169245

RESUMEN

The large size and rapid development of amphibian embryos has facilitated ground-breaking discoveries in developmental biology. Here, we describe the embryogenesis of the Budgett's frog (Lepidobatrachus laevis), an unusual species with eggs that are over twice the diameter of laboratory Xenopus, and embryos that can tolerate higher temperatures to develop into a tadpole four times more rapidly. In addition to detailing their early development, we demonstrate that, like Xenopus, these embryos are amenable to explant culture assays and can express exogenous transcripts in a tissue-specific manner. Moreover, the steep developmental trajectory and large scale of Lepidobatrachus make it exceptionally well-suited for morphogenesis research. For example, the developing organs of the Budgett's frog are massive compared to those of most model species, and are composed of larger individual cells, thereby affording increased subcellular resolution of early vertebrate organogenesis. Furthermore, we found that complete limb regeneration, which typically requires months to achieve in most vertebrate models, occurs in a matter of days in the Budgett's tadpole, which substantially accelerates the pace of experimentation. Thus, the unusual combination of the greater size and speed of the Budgett's frog model provides inimitable advantages for developmental studies-and a novel inroad to address the mechanisms of spatiotemporal scaling during evolution.


Asunto(s)
Anuros/embriología , Modelos Animales , Anfibios , Animales , Linaje de la Célula , Biología Evolutiva , Desarrollo Embrionario , Inmunohistoquímica , Morfogénesis , Organogénesis , Regeneración , Especificidad de la Especie , Xenopus laevis/fisiología
7.
PLoS Genet ; 11(5): e1005221, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25978409

RESUMEN

Bone morphogenetic proteins (BMPs) belong to the transforming growth factor ß (TGFß) superfamily of secreted molecules. BMPs play essential roles in multiple developmental and homeostatic processes in metazoans. Malfunction of the BMP pathway can cause a variety of diseases in humans, including cancer, skeletal disorders and cardiovascular diseases. Identification of factors that ensure proper spatiotemporal control of BMP signaling is critical for understanding how this pathway is regulated. We have used a unique and sensitive genetic screen to identify the plasma membrane-localized tetraspanin TSP-21 as a key new factor in the C. elegans BMP-like "Sma/Mab" signaling pathway that controls body size and postembryonic M lineage development. We showed that TSP-21 acts in the signal-receiving cells and genetically functions at the ligand-receptor level. We further showed that TSP-21 can associate with itself and with two additional tetraspanins, TSP-12 and TSP-14, which also promote Sma/Mab signaling. TSP-12 and TSP-14 can also associate with SMA-6, the type I receptor of the Sma/Mab pathway. Finally, we found that glycosphingolipids, major components of the tetraspanin-enriched microdomains, are required for Sma/Mab signaling. Our findings suggest that the tetraspanin-enriched membrane microdomains are important for proper BMP signaling. As tetraspanins have emerged as diagnostic and prognostic markers for tumor progression, and TSP-21, TSP-12 and TSP-14 are all conserved in humans, we speculate that abnormal BMP signaling due to altered expression or function of certain tetraspanins may be a contributing factor to cancer development.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Glicoesfingolípidos/farmacología , Transducción de Señal , Tetraspaninas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Morfogenéticas Óseas/genética , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/genética , Regulación de la Expresión Génica , Genes Reporteros , Marcadores Genéticos , Datos de Secuencia Molecular , Mutación , Fenotipo , Sensibilidad y Especificidad , Análisis de Secuencia de ADN , Tetraspaninas/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
8.
Development ; 142(11): 2037-47, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25953344

RESUMEN

Organ growth occurs through the integration of external growth signals during the G1 phase of the cell cycle to initiate DNA replication. Although numerous growth factor signals have been shown to be required for the proliferation of cardiomyocytes, genetic studies have only identified a very limited number of transcription factors that act to regulate the entry of cardiomyocytes into S phase. Here, we report that the cardiac para-zinc-finger protein CASZ1 is expressed in murine cardiomyocytes. Genetic fate mapping with an inducible Casz1 allele demonstrates that CASZ1-expressing cells give rise to cardiomyocytes in the first and second heart fields. We show through the generation of a cardiac conditional null mutation that Casz1 is essential for the proliferation of cardiomyocytes in both heart fields and that loss of Casz1 leads to a decrease in cardiomyocyte cell number. We further report that the loss of Casz1 leads to a prolonged or arrested S phase, a decrease in DNA synthesis, an increase in phospho-RB and a concomitant decrease in the cardiac mitotic index. Taken together, these studies establish a role for CASZ1 in mammalian cardiomyocyte cell cycle progression in both the first and second heart fields.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Fase G1 , Corazón/embriología , Mamíferos/embriología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Fase S , Factores de Transcripción/metabolismo , Animales , Linaje de la Célula , Proliferación Celular , Embrión de Mamíferos/metabolismo , Femenino , Integrasas/metabolismo , Masculino , Ratones , Miocardio/citología , Miocardio/metabolismo , Miocardio/ultraestructura
9.
Development ; 141(15): 3040-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24993940

RESUMEN

The identification and characterization of the cellular and molecular pathways involved in the differentiation and morphogenesis of specific cell types of the developing heart are crucial to understanding the process of cardiac development and the pathology associated with human congenital heart disease. Here, we show that the cardiac transcription factor CASTOR (CASZ1) directly interacts with congenital heart disease 5 protein (CHD5), which is also known as tryptophan-rich basic protein (WRB), a gene located on chromosome 21 in the proposed region responsible for congenital heart disease in individuals with Down's syndrome. We demonstrate that loss of CHD5 in Xenopus leads to compromised myocardial integrity, improper deposition of basement membrane, and a resultant failure of hearts to undergo cell movements associated with cardiac formation. We further report that CHD5 is essential for CASZ1 function and that the CHD5-CASZ1 interaction is necessary for cardiac morphogenesis. Collectively, these results establish a role for CHD5 and CASZ1 in the early stages of vertebrate cardiac development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Membrana Basal/metabolismo , Adhesión Celular , Movimiento Celular , Cardiopatías Congénitas/metabolismo , Procesamiento de Imagen Asistido por Computador , Morfogénesis , Miocardio/patología , Miocitos Cardíacos/citología , Fenotipo , Unión Proteica , Técnicas del Sistema de Dos Híbridos , Xenopus laevis
10.
Dev Dyn ; 243(7): 948-56, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24633745

RESUMEN

BACKGROUND: The zinc-finger transcription factor CASZ1 is required for differentiation of a distinct population of cardiomyocytes during development. However, expression of Casz1 mRNA is detected throughout the developing heart, suggesting the spatial regulation of CASZ1 occurs at the protein level. Relatively little is known about posttranscriptional regulation of Casz1 in the heart. RESULTS: We generated antibodies that specifically recognize CASZ1 in developing Xenopus embryos, and performed immunofluorescence analysis of CASZ1 during cardiac development. CASZ1 was detected throughout the developing myocardium. CASZ1 was restricted to terminally differentiated cardiomyocytes, and was down-regulated in cells that re-enter the cell cycle. We determined that CASZ1 expression correlated with terminal differentiation in cardiac muscle cells, skeletal muscle cells, and lymph-heart musculature. CONCLUSIONS: This study indicates that spatially distinct expression of CASZ1 protein may be due to posttranscriptional control of Casz1 mRNA during cardiac development. The results of this study provide insights into the role of Casz1 in cardiac function and in the differentiation of other cell types, including skeletal muscle and lymph heart.


Asunto(s)
Desarrollo de Músculos/fisiología , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Ciclo Celular/genética , Ciclo Celular/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Corazón , Desarrollo de Músculos/genética , Xenopus , Proteínas de Xenopus/genética
11.
Dev Biol ; 389(2): 137-48, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24512688

RESUMEN

The proper formation and function of an organ is dependent on the specification and integration of multiple cell types and tissues. An example of this is the Caenorhabditis elegans hermaphrodite egg-laying system, which requires coordination between the vulva, uterus, neurons, and musculature. While the genetic constituents of the first three components have been well studied, little is known about the molecular mechanisms underlying the specification of the egg-laying musculature. The egg-laying muscles are non-striated in nature and consist of sixteen cells, four each of type I and type II vulval muscles and uterine muscles. These 16 non-striated muscles exhibit distinct morphology, location, synaptic connectivity and function. Using an RNAi screen targeting the putative transcription factors in the C. elegans genome, we identified a number of novel factors important for the diversification of these different types of egg-laying muscles. In particular, we found that RNAi knockdown of lag-1, which encodes the sole C. elegans ortholog of the transcription factor CSL (CBF1, Suppressor of Hairless, LAG-1), an effector of the LIN-12/Notch pathway, led to the production of extra type I vulval muscles. Similar phenotypes were also observed in animals with down-regulation of the Notch receptor LIN-12 and its DSL (Delta, Serrate, LAG-2) ligand LAG-2. The extra type I vulval muscles in animals with reduced LIN-12/Notch signaling resulted from a cell fate transformation of type II vulval muscles to type I vulval muscles. We showed that LIN-12/Notch was activated in the undifferentiated type II vulval muscle cells by LAG-2/DSL that is likely produced by the anchor cell (AC). Our findings provide additional evidence highlighting the roles of LIN-12/Notch signaling in coordinating the formation of various components of the functional C. elegans egg-laying system. We also identify multiple new factors that play critical roles in the proper specification of the different types of egg-laying muscles.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Músculos/metabolismo , Oviposición/fisiología , Receptores Notch/metabolismo , Transducción de Señal , Animales , Tipificación del Cuerpo , Caenorhabditis elegans/citología , Femenino , Organismos Hermafroditas/citología , Organismos Hermafroditas/metabolismo , Ligandos , Masculino , Interferencia de ARN , Factores de Transcripción/metabolismo , Vulva/citología , Vulva/metabolismo
12.
Development ; 141(4): 962-73, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24496632

RESUMEN

The proper dissection of the molecular mechanisms governing the specification and differentiation of specific cell types requires isolation of pure cell populations from heterogeneous tissues and whole organisms. Here, we describe a method for purification of nuclei from defined cell or tissue types in vertebrate embryos using INTACT (isolation of nuclei tagged in specific cell types). This method, previously developed in plants, flies and worms, utilizes in vivo tagging of the nuclear envelope with biotin and the subsequent affinity purification of the labeled nuclei. In this study we successfully purified nuclei of cardiac and skeletal muscle from Xenopus using this strategy. We went on to demonstrate the utility of this approach by coupling the INTACT approach with liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomic methodologies to profile proteins expressed in the nuclei of developing hearts. From these studies we have identified the Xenopus orthologs of 12 human proteins encoded by genes, which when mutated in human lead to congenital heart disease. Thus, by combining these technologies we are able to identify tissue-specific proteins that are expressed and required for normal vertebrate organ development.


Asunto(s)
Núcleo Celular/metabolismo , Técnicas Citológicas/métodos , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Proteómica/métodos , Xenopus/metabolismo , Animales , Biotina , Cromatografía Liquida , Cartilla de ADN/genética , Microscopía Fluorescente , Músculo Esquelético/citología , Miocardio/citología , Membrana Nuclear/metabolismo , Plásmidos/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Estreptavidina , Espectrometría de Masas en Tándem , Xenopus/genética
13.
Methods ; 66(3): 398-409, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23792920

RESUMEN

Advances in sequencing technology have significantly advanced the landscape of developmental biology research. The dissection of genetic networks in model and non-model organisms has been greatly enhanced with high-throughput sequencing technologies. RNA-seq has revolutionized the ability to perform developmental biology research in organisms without a published genome sequence. Here, we describe a protocol for developmental biologists to perform RNA-seq on dissected tissue or whole embryos. We start with the isolation of RNA and generation of sequencing libraries. We further show how to interpret and analyze the large amount of sequencing data that is generated in RNA-seq. We explore the abilities to examine differential expression, gene duplication, transcript assembly, alternative splicing and SNP discovery. For the purposes of this article, we use Xenopus laevis as the model organism to discuss uses of RNA-seq in an organism without a fully annotated genome sequence.


Asunto(s)
Genoma , Análisis de Secuencia de ARN/métodos , Xenopus laevis/genética , Animales , Biología Evolutiva/métodos , Modelos Animales , Xenopus laevis/crecimiento & desarrollo
14.
Dev Cell ; 25(2): 132-43, 2013 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-23639441

RESUMEN

The formation of the vascular system is essential for embryonic development and homeostasis. However, transcriptional control of this process is not fully understood. Here we report an evolutionarily conserved role for the transcription factor CASZ1 (CASTOR) in blood vessel assembly and morphogenesis. In the absence of CASZ1, Xenopus embryos fail to develop a branched and lumenized vascular system, and CASZ1-depleted human endothelial cells display dramatic alterations in adhesion, morphology, and sprouting. Mechanistically, we show that CASZ1 directly regulates Epidermal Growth Factor-Like Domain 7 (Egfl7). We further demonstrate that defects of CASZ1- or EGFL7-depleted cells are in part due to diminished RhoA expression and impaired focal adhesion localization. Moreover, these abnormal endothelial cell behaviors in CASZ1-depleted cells can be rescued by restoration of Egfl7. Collectively, these studies show that CASZ1 is required to directly regulate an EGFL7/RhoA-mediated pathway to promote vertebrate vascular development.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Embrión no Mamífero/metabolismo , Factores de Crecimiento Endotelial/metabolismo , Endotelio Vascular/citología , Proteínas de la Matriz Extracelular/metabolismo , Regulación de la Expresión Génica , Morfogénesis/fisiología , Factores de Transcripción/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Western Blotting , Proteínas de Unión al Calcio , Adhesión Celular , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/genética , Familia de Proteínas EGF , Embrión no Mamífero/citología , Desarrollo Embrionario , Factores de Crecimiento Endotelial/genética , Endotelio Vascular/metabolismo , Proteínas de la Matriz Extracelular/genética , Femenino , Técnica del Anticuerpo Fluorescente , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Técnicas para Inmunoenzimas , Datos de Secuencia Molecular , Factores de Transcripción/genética , Transcripción Genética , Proteínas de Xenopus/genética , Xenopus laevis/crecimiento & desarrollo , Proteína de Unión al GTP rhoA/genética
15.
Birth Defects Res A Clin Mol Teratol ; 91(6): 495-510, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21538812

RESUMEN

Congenital heart defects affect nearly 1% of all newborns and are a significant cause of infant death. Clinical studies have identified a number of congenital heart syndromes associated with mutations in genes that are involved in the complex process of cardiogenesis. The African clawed frog, Xenopus, has been instrumental in studies of vertebrate heart development and provides a valuable tool to investigate the molecular mechanisms underlying human congenital heart diseases. In this review, we discuss the methodologies that make Xenopus an ideal model system to investigate heart development and disease. We also outline congenital heart conditions linked to cardiac genes that have been well studied in Xenopus and describe some emerging technologies that will further aid in the study of these complex syndromes.


Asunto(s)
Modelos Animales de Enfermedad , Cardiopatías Congénitas/embriología , Cardiopatías Congénitas/genética , Xenopus/embriología , Xenopus/metabolismo , Animales , Corazón/embriología , Morfogénesis , Xenopus/genética
16.
Development ; 137(9): 1451-60, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20335356

RESUMEN

Forkhead transcription factors play crucial and diverse roles in mesoderm development. In particular, FoxF and FoxC genes are, respectively, involved in the development of visceral/splanchnic mesoderm and non-visceral mesoderm in coelomate animals. Here, we show at single-cell resolution that, in the pseudocoelomate nematode C. elegans, the single FoxF/FoxC transcription factor LET-381 functions in a feed-forward mechanism in the specification and differentiation of the non-muscle mesodermal cells, the coelomocytes (CCs). LET-381/FoxF directly activates the CC specification factor, the Six2 homeodomain protein CEH-34, and functions cooperatively with CEH-34/Six2 to directly activate genes required for CC differentiation. Our results unify a diverse set of studies on the functions of FoxF/FoxC factors and provide a model for how FoxF/FoxC factors function during mesoderm development.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Diferenciación Celular , Factores de Transcripción Forkhead/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , Animales , Animales Modificados Genéticamente , Sitios de Unión , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Ensayo de Cambio de Movilidad Electroforética , Elementos de Facilitación Genéticos/genética , Elementos de Facilitación Genéticos/fisiología , Factores de Transcripción Forkhead/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Microscopía Fluorescente , Modelos Biológicos , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
Dev Biol ; 331(2): 350-60, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19427847

RESUMEN

The subdivision of mesodermal cells into muscle and non-muscle cells is crucial to animal development. In the C. elegans postembryonic mesoderm, this subdivision is a result of an asymmetric cell division that leads to the formation of striated body wall muscles and non-muscle coelomocytes. Here we report that the Six homeodomain protein CEH-34 and its cofactor Eyes Absent, EYA-1, function synergistically to promote the non-muscle fate in cells also competent to form muscles. We further show that the asymmetric expression of ceh-34 and eya-1 is regulated by a combination of 1) mesodermal intrinsic factors MAB-5, HLH-1 and FOZI-1, 2) differential POP-1 (TCF/LEF) transcriptional activity along the anterior-posterior axis, and 3) coelomocyte competence factor(s). These factors are conserved in both vertebrates and invertebrates, suggesting a conserved paradigm for mesoderm development in metazoans.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteínas de Homeodominio/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mesodermo/fisiología , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Factores de Transcripción/metabolismo , Proteínas Wnt/metabolismo , Animales , Animales Modificados Genéticamente , Antígenos de Diferenciación/metabolismo , Caenorhabditis elegans/embriología , Caenorhabditis elegans/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Mesodermo/crecimiento & desarrollo , Desarrollo de Músculos , Músculos/citología , Músculos/embriología , Transducción de Señal/fisiología
18.
Mech Dev ; 125(5-6): 451-61, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18316179

RESUMEN

Metazoan development proceeds primarily through the regulated expression of genes encoding transcription factors and components of cell signaling pathways. One way to decipher the complex developmental programs is to assemble the underlying gene regulatory networks by dissecting the cis-regulatory modules that direct temporal-spatial expression of developmental genes and identify corresponding trans-regulatory factors. Here, we focus on the regulation of a HMX homoebox gene called mls-2, which functions at the intersection of a network that regulates cleavage orientation, cell proliferation and fate specification in the Caenorhabditis elegans postembryonic mesoderm. In addition to its transient expression in the postembryonic mesodermal lineage, the M lineage, mls-2 expression is detected in a subset of embryonic cells, in three pairs of head neurons and transiently in the somatic gonad. Through mutational analysis of the mls-2 promoter, we identified two elements (E1 and E2) involved in regulating the temporal-spatial expression of mls-2. In particular, we showed that one of the elements (E1) required for mls-2 expression in the M lineage contains two critical putative PBC-Hox binding sites that are evolutionarily conserved in C. briggsae and C. remanei. Furthermore, the C. elegans PBC homolog CEH-20 is required for mls-2 expression in the M lineage. Our data suggest that mls-2 might be a direct target of CEH-20 in the M lineage and that the regulation of CEH-20 on mls-2 is likely Hox-independent.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Mesodermo/metabolismo , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Caenorhabditis elegans , Linaje de la Célula , Análisis Mutacional de ADN , Eliminación de Gen , Datos de Secuencia Molecular , Neuronas/metabolismo , Regiones Promotoras Genéticas , Homología de Secuencia de Ácido Nucleico
19.
Development ; 134(1): 19-29, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17138663

RESUMEN

Striated muscle development in vertebrates requires the redundant functions of multiple members of the MyoD family. Invertebrates such as Drosophila and Caenorhabditis elegans contain only one MyoD homolog in each organism. Earlier observations suggest that factors outside of the MyoD family might function redundantly with MyoD in striated muscle fate specification in these organisms. However, the identity of these factors has remained elusive. Here, we describe the identification and characterization of FOZI-1, a putative transcription factor that functions redundantly with CeMyoD (HLH-1) in striated body wall muscle (BWM) fate specification in the C. elegans postembryonic mesoderm. fozi-1 encodes a novel nuclear-localized protein with motifs characteristic of both transcription factors and actin-binding proteins. We show that FOZI-1 shares the same expression pattern as CeMyoD in the postembryonic mesodermal lineage, the M lineage, and that fozi-1-null mutants exhibit similar M lineage-null defects to those found in animals lacking CeMyoD in the M lineage (e.g. loss of a fraction of M lineage-derived BWMs). Interestingly, fozi-1-null mutants with a reduced level of CeMyoD lack most, if not all, M lineage-derived BWMs. Our results indicate that FOZI-1 and the Hox factor MAB-5 function redundantly with CeMyoD in the specification of the striated BWM fate in the C. elegans postembryonic mesoderm, implicating a remarkable level of complexity for the production of a simple striated musculature in C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Mesodermo/fisiología , Proteínas Musculares/metabolismo , Músculo Esquelético/embriología , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Alelos , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Diferenciación Celular , Linaje de la Célula , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular , Mesodermo/citología , Modelos Biológicos , Datos de Secuencia Molecular , Organismos Modificados Genéticamente , Estructura Terciaria de Proteína , Interferencia de ARN , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Dedos de Zinc
20.
Development ; 133(15): 2887-96, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16790477

RESUMEN

In C. elegans, the Sma/Mab TGFbeta signaling pathway regulates body size and male tail patterning. SMA-9, the C. elegans homolog of Schnurri, has been shown to function as a downstream component to mediate the Sma/Mab TGFbeta signaling pathway in these processes. We have discovered a new role for SMA-9 in dorsoventral patterning of the C. elegans post-embryonic mesoderm, the M lineage. In addition to a small body size, sma-9 mutant animals exhibit a dorsal-to-ventral fate transformation within the M lineage. This M lineage defect of sma-9 mutants is unique in that animals carrying mutations in all other known components of the TGFbeta pathway exhibit no M lineage defects. Surprisingly, mutations in the core components of the Sma/Mab TGFbeta signaling pathway suppressed the M lineage defects of sma-9 mutants without suppressing their body size defects. We show that this suppression specifically happens within the M lineage. Our studies have uncovered an unexpected role of SMA-9 in antagonizing the TGFbeta signaling pathway during mesodermal patterning, suggesting a novel mode of function for the SMA-9/Schnurri family of proteins.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/embriología , Caenorhabditis elegans/fisiología , Embrión no Mamífero/fisiología , Mesodermo/fisiología , Factores de Transcripción/fisiología , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo , Tamaño Corporal , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Eliminación de Gen , Transducción de Señal , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA