Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Glob Chang Biol ; 25(6): 2077-2093, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30844112

RESUMEN

Biochar application to croplands has been proposed as a potential strategy to decrease losses of soil-reactive nitrogen (N) to the air and water. However, the extent and spatial variability of biochar function at the global level are still unclear. Using Random Forest regression modelling of machine learning based on data compiled from the literature, we mapped the impacts of different biochar types (derived from wood, straw, or manure), and their interactions with biochar application rates, soil properties, and environmental factors, on soil N losses (NH3 volatilization, N2 O emissions, and N leaching) and crop productivity. The results show that a suitable distribution of biochar across global croplands (i.e., one application of <40 t ha-1 wood biochar for poorly buffered soils, such as those characterized by soil pH<5, organic carbon<1%, or clay>30%; and one application of <80 t ha-1 wood biochar, <40 t ha-1 straw biochar, or <10 t ha-1 manure biochar for other soils) could achieve an increase in global crop yields by 222-766 Tg yr-1 (4%-16% increase), a mitigation of cropland N2 O emissions by 0.19-0.88 Tg N yr-1 (6%-30% decrease), a decline of cropland N leaching by 3.9-9.2 Tg N yr-1 (12%-29% decrease), but also a fluctuation of cropland NH3 volatilization by -1.9-4.7 Tg N yr-1 (-12%-31% change). The decreased sum of the three major reactive N losses amount to 1.7-9.4 Tg N yr-1 , which corresponds to 3%-14% of the global cropland total N loss. Biochar generally has a larger potential for decreasing soil N losses but with less benefits to crop production in temperate regions than in tropical regions.


Asunto(s)
Carbón Orgánico , Productos Agrícolas , Nitrógeno/análisis , Suelo/química , Amoníaco/análisis , Estiércol , Óxido Nitroso/análisis , Volatilización
2.
Glob Chang Biol ; 22(12): 3859-3864, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27185416

RESUMEN

More than 100 countries pledged to reduce agricultural greenhouse gas (GHG) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on Climate Change. Yet technical information about how much mitigation is needed in the sector vs. how much is feasible remains poor. We identify a preliminary global target for reducing emissions from agriculture of ~1 GtCO2 e yr-1 by 2030 to limit warming in 2100 to 2 °C above pre-industrial levels. Yet plausible agricultural development pathways with mitigation cobenefits deliver only 21-40% of needed mitigation. The target indicates that more transformative technical and policy options will be needed, such as methane inhibitors and finance for new practices. A more comprehensive target for the 2 °C limit should be developed to include soil carbon and agriculture-related mitigation options. Excluding agricultural emissions from mitigation targets and plans will increase the cost of mitigation in other sectors or reduce the feasibility of meeting the 2 °C limit.


Asunto(s)
Agricultura , Cambio Climático , Gases/análisis , Efecto Invernadero/prevención & control , Carbono/análisis , Efecto Invernadero/legislación & jurisprudencia , Cooperación Internacional , Metano/análisis , Política Pública , Suelo/química
4.
Environ Sci Technol ; 47(1): 23-36, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23092162

RESUMEN

Gas leakage from deep storage reservoirs is a major risk factor associated with geologic carbon sequestration (GCS). A systematic understanding of how such leakage would impact the geochemistry of potable aquifers and the vadose zone is crucial to the maintenance of environmental quality and the widespread acceptance of GCS. This paper reviews the current literature and discusses current knowledge gaps on how elevated CO(2) levels could influence geochemical processes (e.g., adsorption/desorption and dissolution/precipitation) in potable aquifers and the vadose zone. The review revealed that despite an increase in research and evidence for both beneficial and deleterious consequences of CO(2) migration into potable aquifers and the vadose zone, significant knowledge gaps still exist. Primary among these knowledge gaps is the role/influence of pertinent geochemical factors such as redox condition, CO(2) influx rate, gas stream composition, microbial activity, and mineralogy in CO(2)-induced reactions. Although these factors by no means represent an exhaustive list of knowledge gaps we believe that addressing them is pivotal in advancing current scientific knowledge on how leakage from GCS may impact the environment, improving predictions of CO(2)-induced geochemical changes in the subsurface, and facilitating science-based decision- and policy-making on risk associated with geologic carbon sequestration.


Asunto(s)
Contaminantes Atmosféricos/química , Dióxido de Carbono/química , Secuestro de Carbono , Contaminación del Aire/prevención & control , Fenómenos Geológicos
5.
Environ Sci Technol ; 46(3): 1415-21, 2012 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-22242866

RESUMEN

The ability of engineered black carbons (or biochars) to resist abiotic and, or biotic degradation (herein referred to as recalcitrance) is crucial to their successful deployment as a soil carbon sequestration strategy. A new recalcitrance index, the R(50), for assessing biochar quality for carbon sequestration is proposed. The R(50) is based on the relative thermal stability of a given biochar to that of graphite and was developed and evaluated with a variety of biochars (n = 59), and soot-like black carbons. Comparison of R(50), with biochar physicochemical properties and biochar-C mineralization revealed the existence of a quantifiable relationship between R(50) and biochar recalcitrance. As presented here, the R(50) is immediately applicable to pre-land application screening of biochars into Class A (R(50) ≥ 0.70), Class B (0.50 ≤ R(50) < 0.70) or Class C (R(50) < 0.50) recalcitrance/carbon sequestration classes. Class A and Class C biochars would have carbon sequestration potential comparable to soot/graphite and uncharred plant biomass, respectively, whereas Class B biochars would have intermediate carbon sequestration potential. We believe that the coupling of the R(50), to an index-based degradation, and an economic model could provide a suitable framework in which to comprehensively assess soil carbon sequestration in biochars.


Asunto(s)
Secuestro de Carbono , Carbono/química , Carbón Orgánico/química , Carbón Orgánico/clasificación , Restauración y Remediación Ambiental/métodos , Modelos Químicos , Suelo/química , Modelos Económicos , Temperatura , Termogravimetría
6.
Artículo en Inglés | MEDLINE | ID: mdl-24947655

RESUMEN

This paper explores some of the fundamental and practical issues related to the behavior of nanoparticles in the environment and their potential impacts on human health. In our research we have explored the reactive behaviors of nanoparticles with contaminants in the environment, how nanoparticle change in response to their environment and time, and how nanoparticles interact with biological systems of various types. It has become apparent that researchers often underestimate the difficulties of preparing and delivering well characterized nanoparticles for specific types of testing or applications. Difficulties arise in areas that range from not understanding what imparts the "nano" character of a particle to not knowing the impacts of minor species on the properties of high surface area materials. Some of our adventures and misadventures serve as examples of some of these issues as they relate to providing well defined particles for biological studies.

7.
Nat Commun ; 1: 56, 2010 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-20975722

RESUMEN

Production of biochar (the carbon (C)-rich solid formed by pyrolysis of biomass) and its storage in soils have been suggested as a means of abating climate change by sequestering carbon, while simultaneously providing energy and increasing crop yields. Substantial uncertainties exist, however, regarding the impact, capacity and sustainability of biochar at the global level. In this paper we estimate the maximum sustainable technical potential of biochar to mitigate climate change. Annual net emissions of carbon dioxide (CO(2)), methane and nitrous oxide could be reduced by a maximum of 1.8 Pg CO(2)-C equivalent (CO(2)-C(e)) per year (12% of current anthropogenic CO(2)-C(e) emissions; 1 Pg=1 Gt), and total net emissions over the course of a century by 130 Pg CO(2)-C(e), without endangering food security, habitat or soil conservation. Biochar has a larger climate-change mitigation potential than combustion of the same sustainably procured biomass for bioenergy, except when fertile soils are amended while coal is the fuel being offset.


Asunto(s)
Carbón Orgánico , Cambio Climático , Dióxido de Carbono/metabolismo , Metano/metabolismo , Óxido Nitroso/metabolismo
8.
J Phys Chem B ; 114(39): 12614-22, 2010 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-20879804

RESUMEN

We studied the coordination environment about Cu(II) in a pure ionic liquid, 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl), and in binary mixtures of this compound with water across the entire range of compositions, using a combination of X-ray absorption fine structure (XAFS), ultraviolet-visible (UV-vis) spectroscopy, and electronic structure calculations. Our results show a series of stages in the ion pairing of the divalent cation, Cu(II), including the contact ion pairing of Cu(2+) with multiple Cl(-) ligands to form various CuCl(n)((2-n)) polyanions, as well as the subsequent solvation and ion pairing of the polychlorometallate anion with the EMIM(+) cation. Ion-pair formation is strongly promoted in [EMIM]Cl by the low dielectric constant and by the extensive breakdown of the water hydrogen-bond network in [EMIM]Cl-water mixtures. The CuCl(4)(2-) species dominates in the [EMIM]Cl solvent, and calculations along with spectroscopy show that its geometry distorts to C(2) symmetry compared to D(2d) in the gas phase. These results are important in understanding catalysis and separation processes involving transition metals in ionic liquid systems.

9.
Environ Sci Technol ; 44(13): 5079-85, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20509654

RESUMEN

The association of a secondary metal with iron particles affects redox reactivity in engineered remediation systems. However, the structural characteristics of the metal additives and mechanism responsible for changes in reactivity have not been fully elucidated. Here, we synthesized iron nanoparticles with Cu, Pd, and Ni content ranging from 0-2 mol % via a solution deposition process (SDP), hydrogen reduction process (HRP), or hydrogen reduction of ferrihydrite coprecipitated with the metal cations (HRCO). Results from solid-state characterization show that the synthesis methods produced similar iron core/magnetite shell particles but produced substantial differences in terms of the distribution of the metal additives. In SDP, the metal additives were heterogeneously distributed on the surface of the particles. The metal additives were clearly discernible in TEM images as spherical nanoparticles (5-20 nm) on the HRP and HRCO particles. Because the metals were integral to the synthesis process, we hypothesize that the metal additive is present as solute within the iron core of the HRCO particles. Kinetic batch experiments of carbon tetrachloride (CT) degradation were performed to quantitatively compare the redox reactivity of the particles. Overall, metal additives resulted in enhanced pseudo-first-order rate constants of CT degradation (k(O,CT)) compared to that of the iron nanoparticles. For the bimetallic iron nanoparticles prepared by SDP and HRP, k(O,CT) increased with the concentration of metal additives. The values of chloroform yield (Y(CF)) were independent of the identity and amount of metal additives. However, both k(O,CT) and Y(CF) of the HRCO iron particles were significantly increased. Results suggest that it is the distribution of the metal additives that most strongly impacts reactivity and product distribution. For example, for materials with ca. 0.9 mol % Ni, reactivity and Y(CF) varied substantially (HRCO > SDP > HRP), and HRCO-NiFe resulted in the lowest final chloroform concentration because chloroform was rapidly dechlorinated. In addition, sequential spike experiments for long-term reactivity demonstrated that the presence of the metal additives facilitated reduction by enabling greater utilization of Fe(0).


Asunto(s)
Cobre/química , Hierro/química , Nanopartículas del Metal/química , Nanotecnología/métodos , Níquel/química , Paladio/química , Química/métodos , Óxido Ferrosoférrico/química , Concentración de Iones de Hidrógeno , Cinética , Metales/química , Microscopía Electrónica de Transmisión/métodos , Factores de Tiempo , Difracción de Rayos X
10.
J Am Chem Soc ; 131(25): 8824-32, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19496564

RESUMEN

An iron (Fe) nanoparticle exposed to air at room temperature will be instantly covered by an oxide shell that is typically approximately 3 nm thick. The nature of this native oxide shell, in combination with the underlying Fe(0) core, determines the physical and chemical behavior of the core-shell nanoparticle. One of the challenges of characterizing core-shell nanoparticles is determining the structure of the oxide shell, that is, whether it is FeO, Fe(3)O(4), gamma-Fe(2)O(3), alpha-Fe(2)O(3), or something else. The results of prior characterization efforts, which have mostly used X-ray diffraction and spectroscopy, electron diffraction, and transmission electron microscopic imaging, have been framed in terms of one of the known Fe-oxide structures, although it is not necessarily true that the thin layer of Fe oxide is a known Fe oxide. In this Article, we probe the structure of the oxide shell on Fe nanoparticles using electron energy loss spectroscopy (EELS) at the oxygen (O) K-edge with a spatial resolution of several nanometers (i.e., less than that of an individual particle). We studied two types of representative particles: small particles that are fully oxidized (no Fe(0) core) and larger core-shell particles that possess an Fe core. We found that O K-edge spectra collected for the oxide shell in nanoparticles show distinct differences from those of known Fe oxides. Typically, the prepeak of the spectra collected on both the core-shell and the fully oxidized particles is weaker than that collected on standard Fe(3)O(4). Given the fact that the origin of this prepeak corresponds to the transition of the O 1s electron to the unoccupied state of O 2p hybridized with Fe 3d, a weak pre-edge peak indicates a combination of the following four factors: a higher degree of occupancy of the Fe 3d orbital; a longer Fe-O bond length; a decreased covalency of the Fe-O bond; and a measure of cation vacancies. These results suggest that the coordination configuration in the oxide shell on Fe nanoparticles is defective as compared to that of their bulk counterparts. Implications of these defective structural characteristics on the properties of core-shell structured iron nanoparticles are discussed.


Asunto(s)
Electrones , Hierro/química , Nanopartículas/química , Nanopartículas/ultraestructura , Óxidos/química , Microscopía Electrónica de Transmisión , Modelos Moleculares , Tamaño de la Partícula , Propiedades de Superficie , Difracción de Rayos X
11.
Environ Sci Technol ; 41(24): 8349-54, 2007 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18200862

RESUMEN

Biofilms of sulfate-reducing bacteria Desulfovibrio desulfuricans G20 were used to reduce dissolved U(VI) and subsequently immobilize U(IV) in the presence of uranium-complexing carbonates. The biofilms were grown in three identically operated fixed bed reactors, filled with three types of minerals: one noncarbonate-bearing mineral (hematite) and two carbonate-bearing minerals (calcite and dolomite). The source of carbonates in the reactors filled with calcite and dolomite were the minerals, while in the reactor filled with hematite it was a 10 mM carbonate buffer, pH 7.2, which we added to the growth medium. Our five-month study demonstrated that the sulfate-reducing biofilms grown in all reactors were able to immobilize/reduce uranium efficiently, despite the presence of uranium-complexing carbonates.


Asunto(s)
Biopelículas , Carbonato de Calcio/química , Desulfovibrio desulfuricans/metabolismo , Compuestos Férricos/química , Magnesio/química , Sulfatos/química , Uranio/metabolismo , Concentración de Iones de Hidrógeno
12.
Appl Spectrosc ; 60(8): 914-9, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16925928

RESUMEN

On-line Fourier transform infrared (FT-IR) spectroscopy was applied to monitor the concentration of halogenated volatile organic compounds in a sample-preparation process that simulates long-term, slow accumulation of contaminants in soils (i.e., aging). Artificial aging is conducted by circulating a supercritical fluid solution containing the contaminant(s) of interest through a packed soil column. Mid-infrared spectra of several volatile halocarbons were measured in supercritical Xe and CO(2) to evaluate possible interferences from the strong absorption of CO(2). Although some of the C-X bands were partially masked in supercritical CO(2), all of the compounds studied had distinct spectral features in the region 1400-700 cm(-1) and could be monitored in either solvent. Quantitative measurements of halogenated volatile organics in supercritical CO(2) were demonstrated with CCl(4). Excellent results were obtained over the range 7-280 mM. Representative artificial aging experiments were conducted on two test soils using CCl(4) as the contaminant. On-line (FT-IR) estimates of the aged soil concentrations were 1.3-4.4 times higher than off-line concentrations obtained by gas chromatography/mass spectrometry. The discrepancies were primarily ascribed to post-aging losses that occurred during depressurization and subsequent sample handling. FT-IR spectroscopy is shown to be a powerful tool for monitoring soil loading behavior and for developing artificial aging protocols.


Asunto(s)
Carbono/química , Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Suelo , Espectroscopía Infrarroja por Transformada de Fourier/instrumentación , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Dióxido de Carbono , Tetracloruro de Carbono/química , Contaminantes Ambientales/química , Hidrocarburos Halogenados/química , Modelos Lineales , Presión , Solventes , Temperatura , Factores de Tiempo
13.
J Nanosci Nanotechnol ; 6(2): 562-7, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16573062

RESUMEN

Synthesis of 10 to 500 nm diameter Fe-based nanoparticles is described. Nanometer-sized droplets of iron carbonyl are generated by the rapid expansion of CO2-based supercritical fluid solutions and are photolyzed in-flight using a UV lamp to remove the carbonyl groups. Solid metal particles are collected electrostatically as coatings or loose particle aggregates on solid surfaces. Upon air oxidation, the iron particles react rapidly to produce an iron oxide phase. Mo-based nanoparticles were similarly produced using a Mo(Co)6 precursor. FTIR analysis of collected nanoparticles suggests that carbonyl groups are more readily photolyzed from the Fe precursor than from the Mo analog.


Asunto(s)
Dióxido de Carbono/química , Metales/química , Nanotecnología , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Soluciones , Espectroscopía Infrarroja por Transformada de Fourier , Rayos Ultravioleta
14.
Environ Sci Technol ; 39(7): 2059-66, 2005 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15871237

RESUMEN

In cultures of Desulfovibrio desulfuricans 620 the effects of iron(III) (hydr)oxides (hematite, goethite, and ferrihydrite) on microbial reduction and reoxidation of uranium (U) were evaluated under lactate-limited sulfate-reducing conditions. With lactate present, G20 reduced U(VI) in both 1,4-piperazinediethanesulfonate (PIPES) and bicarbonate buffer. Once lactate was depleted, however, microbially reduced U served as an electron donor to reduce Fe(III) present in iron(III) (hydr)oxides. With the same initial amount of Fe(III) (10 mmol/L) for each iron(III) (hydr)oxide, reoxidation of U(IV) was greater with hematite than with goethite orferrihydrite. As the initial mass loading of hematite increased from 0 to 20 mmol of Fe(III)/L, the rate and extent of U(IV) reoxidation increased. Subsequent addition of hematite [15 mmol of Fe(III)/L] to stationary-phase cultures containing microbially reduced U(IV) also resulted in rapid reoxidation to U(VI). Analysis by U L3-edge X-ray absorption near-edge spectroscopy (XANES) of microbially reduced U particles yielded spectra similar to that of natural uraninite. Observations by high-resolution transmission electron microscopy, selected area electron diffraction, and energy-dispersive X-ray spectroscopic analysis confirmed that precipitated U associated with cells was uraninite with particle diameters of 3-5 nm. By the same techniques, iron sulfide precipitates were found to have a variable Fe and S stoichiometry and were not associated with cells.


Asunto(s)
Desulfovibrio desulfuricans/metabolismo , Compuestos Férricos/metabolismo , Uranio/metabolismo , Ácidos Alcanesulfónicos , Bicarbonatos , Desulfovibrio desulfuricans/ultraestructura , Ácido Láctico/metabolismo , Microscopía Electrónica de Transmisión , Oxidación-Reducción , Piperazinas , Análisis Espectral/métodos , Rayos X
15.
Environ Sci Technol ; 39(5): 1221-30, 2005 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-15787360

RESUMEN

There are reports that nano-sized zero-valent iron (Fe0) exhibits greater reactivity than micro-sized particles of Fe0, and it has been suggested that the higher reactivity of nano-Fe0 may impart advantages for groundwater remediation or other environmental applications. However, most of these reports are preliminary in that they leave a hostof potentiallysignificant(and often challenging) material or process variables either uncontrolled or unresolved. In an effort to better understand the reactivity of nano-Fe0, we have used a variety of complementary techniques to characterize two widely studied nano-Fe0 preparations: one synthesized by reduction of goethite with heat and H2 (Fe(H2)) and the other by reductive precipitation with borohydride (Fe(BH)). Fe(H2) is a two-phase material consisting of 40 nm alpha-Fe0 (made up of crystals approximately the size of the particles) and Fe3O4 particles of similar size or larger containing reduced sulfur; whereas Fe(BH) is mostly 20-80 nm metallic Fe particles (aggregates of <1.5 nm grains) with an oxide shell/coating that is high in oxidized boron. The FeBH particles further aggregate into chains. Both materials exhibit corrosion potentials that are more negative than nano-sized Fe2O3, Fe3O4, micro-sized Fe0, or a solid Fe0 disk, which is consistent with their rapid reduction of oxygen, benzoquinone, and carbon tetrachloride. Benzoquinone-which presumably probes inner-sphere surface reactions-reacts more rapidly with FeBH than Fe(H2), whereas carbon tetrachloride reacts at similar rates with FeBH and Fe(H2), presumably by outer-sphere electron transfer. Both types of nano-Fe0 react more rapidlythan micro-sized Fe0 based on mass-normalized rate constants, but surface area-normalized rate constants do not show a significant nano-size effect. The distribution of products from reduction of carbon tetrachloride is more favorable with Fe(H2), which produces less chloroform than reaction with Fe(BH).


Asunto(s)
Compuestos de Hierro/química , Nanoestructuras , Precipitación Química , Corrosión , Electroquímica , Ensayo de Materiales , Análisis Espectral
16.
J Am Chem Soc ; 126(30): 9387-98, 2004 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-15281831

RESUMEN

We report the synthesis of colloidal Mn(2+)-doped ZnO (Mn(2+):ZnO) quantum dots and the preparation of room-temperature ferromagnetic nanocrystalline thin films. Mn(2+):ZnO nanocrystals were prepared by a hydrolysis and condensation reaction in DMSO under atmospheric conditions. Synthesis was monitored by electronic absorption and electron paramagnetic resonance (EPR) spectroscopies. Zn(OAc)(2) was found to strongly inhibit oxidation of Mn(2+) by O(2), allowing the synthesis of Mn(2+):ZnO to be performed aerobically. Mn(2+) ions were removed from the surfaces of as-prepared nanocrystals using dodecylamine to yield high-quality internally doped Mn(2+):ZnO colloids of nearly spherical shape and uniform diameter (6.1 +/- 0.7 nm). Simulations of the highly resolved X- and Q-band nanocrystal EPR spectra, combined with quantitative analysis of magnetic susceptibilities, confirmed that the manganese is substitutionally incorporated into the ZnO nanocrystals as Mn(2+) with very homogeneous speciation, differing from bulk Mn(2+):ZnO only in the magnitude of D-strain. Robust ferromagnetism was observed in spin-coated thin films of the nanocrystals, with 300 K saturation moments as large as 1.35 micro(B)/Mn(2+) and T(C) > 350 K. A distinct ferromagnetic resonance signal was observed in the EPR spectra of the ferromagnetic films. The occurrence of ferromagnetism in Mn(2+):ZnO and its dependence on synthetic variables are discussed in the context of these and previous theoretical and experimental results.


Asunto(s)
Magnetismo , Manganeso/química , Puntos Cuánticos , Óxido de Zinc/química , Coloides/química , Cristalización , Espectroscopía de Resonancia por Spin del Electrón , Nanotecnología , Difracción de Rayos X
17.
Environ Sci Technol ; 38(11): 3019-27, 2004 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-15224730

RESUMEN

Modeling uranium (U) transport in subsurface environments requires a thorough knowledge of mechanisms likely to restrict its mobility, such as surface complexation, precipitation, and colloid formation. In closed systems, sulfate-reducing bacteria (SRB) such as Desulfovibrio spp. demonstrably affect U immobilization by enzymatic reduction of U(VI) species (primarily the uranyl ion, UO2(2+), and its complexes) to U(IV). However, our understanding of such interactions under chronic U(VI) exposure in dynamic systems is limited. As a first step to understanding such interactions, we performed bioreactor experiments under continuous flow to study the effect of a biofilm of the sulfate-reducing bacterium Desulfovibrio desulfuricans attached to specular hematite (alpha-Fe2O3) surfaces on surface-associated U(VI) complexation, transformation, and mobility. Employing real-time microscopic observation and X-ray photoelectron spectroscopy (XPS), we show that the characteristics of the U(VI) complex(es) formed at the hematite surface are influenced by the composition of the bulk aqueous phase flowing across the surface and bythe presence of surface-associated SRB. The XPS data further suggest higher levels of U associated with hematite surfaces colonized by SRB than with bacteria-free surfaces. Microscopic observations indicate that at least a portion of the U(VI) that accumulates in the presence of the SRB is exterior to the cells, possibly associated with the extracellular biofilm matrix. The U4f7/2 core-region spectrum and U5f2 valence-band spectrum provide preliminary evidence that the SRB-colonized hematite surface accumulates both U(VI) and U(IV) phases, whereas only the U(VI) phase(s) accumulates on uncolonized hematite surfaces. The results suggest that mineral surfaces exposed to a continuously replenished supply of U(VI)-containing aqueous phase will accumulate U phases that may be more representative of those that exist in U-contaminated aquifers than those which accumulate in closed experimental systems. These phases should be considered in models attempting to predict U transport through subsurface environments.


Asunto(s)
Desulfovibrio/crecimiento & desarrollo , Compuestos Férricos/química , Modelos Teóricos , Uranio/química , Contaminantes Radiactivos del Agua/análisis , Disponibilidad Biológica , Reactores Biológicos , Coloides , Desulfovibrio/fisiología , Predicción , Dinámica Poblacional , Análisis Espectral
18.
Environ Sci Technol ; 38(7): 2067-74, 2004 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15112808

RESUMEN

Hexavalent uranium [U(VI)] was immobilized using biofilms of the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans G20. The biofilms were grown in flat-plate continuous-flow reactors using lactate as the electron donor and sulfate as the electron acceptor. U(VI)was continuously fed into the reactor for 32 weeks at a concentration of 126 microM. During this time, the soluble U(VI) was removed (between 88 and 96% of feed) from solution and immobilized in the biofilms. The dynamics of U immobilization in the sulfate-reducing biofilms were quantified by estimating: (1) microbial activity in the SRB biofilm, defined as the hydrogen sulfide (H2S) production rate and estimated from the H2S concentration profiles measured using microelectrodes across the biofilms; (2) concentration of dissolved U in the solution; and (3) the mass of U precipitated in the biofilm. Results suggest that U was immobilized in the biofilms as a result of two processes: (1) enzymatically and (2) chemically, by reacting with microbially generated H2S. Visual inspection showed that the dissolved sulfide species reacted with U(VI) to produce a black precipitate. Synchrotron-based U L3-edge X-ray absorption near edge structure (XANES) spectroscopy analysis of U precipitated abiotically by sodium sulfide indicated that U(VI) had been reduced to U(IV). Selected-area electron diffraction pattern and crystallographic analysis of transmission electron microscope lattice-fringe images confirmed the structure of precipitated U as being that of uraninite.


Asunto(s)
Biopelículas , Bacterias Reductoras del Azufre/fisiología , Uranio/aislamiento & purificación , Contaminantes Radiactivos del Agua/aislamiento & purificación , Precipitación Química , Sulfuro de Hidrógeno/análisis , Solubilidad , Sulfatos/metabolismo , Uranio/química
19.
Appl Spectrosc ; 58(2): 203-11, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15000715

RESUMEN

A combined mid-infrared spectroscopic/statistical modeling approach for the discrimination and identification, at the strain level, of both sporulated and vegetative bacterial samples is presented. Transmission mode spectra of bacteria dried on ZnSe windows were collected using a Fourier transform mid-infrared (FT-IR) spectrometer. Five Bacillus bacterial strains (B. atrophaeus 49337, B. globigii Dugway, B. thuringiensis spp. kurstaki 35866, B. subtilis 49760, and B. subtilis 6051) were used to construct a reference spectral library and to parameterize a four-step statistical model for the systematic identification of bacteria. The statistical methods used in this initial feasibility study included principal component analysis (PCA), classification and regression trees (CART), and Mahalanobis distance calculations. Internal cross-validation studies successfully classified 100% of the samples into their correct physiological state (sporulated or vegetative) and identified 67% of the samples correctly as to their bacterial strain. Analysis of thirteen blind samples, which included reference and other bacteria, nonbiological materials, and mixtures of both nonbiological and bacterial samples, yielded comparable accuracy. The primary advantage of this approach is the accurate identification of unknown bacteria, including spores, in a matter of minutes.


Asunto(s)
Bacillus , Interpretación Estadística de Datos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Esporas Bacterianas/aislamiento & purificación , Bacillus/clasificación , Bacillus/crecimiento & desarrollo , Bacillus/aislamiento & purificación , Reproducibilidad de los Resultados , Esporas Bacterianas/clasificación
20.
Appl Spectrosc ; 57(8): 893-9, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-14661830

RESUMEN

Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) has been applied for the first time to the identification and speciation of bacterial spores. A total of forty specimens representing five strains of Bacillus spores (Bacillus subtilis ATCC 49760, Bacillus atrophaeus ATCC 49337, Bacillus subtilis 6051, Bacillus thuringiensis subsp. kurstaki, and Bacillus globigii Dugway) were analyzed. Spores were deposited, with minimal preparation, into the photoacoustic sample cup and their spectra recorded. Principal component analysis (PCA), classification and regression trees (CART), and Mahalanobis distance calculations were used on this spectral library to develop algorithms for step-wise classification at three levels: (1) bacterial/nonbacterial, (2) membership within the spore library, and (3) bacterial strain. Internal cross-validation studies on library spectra yielded classification success rates of 87% or better at each of these three levels. Analysis of fifteen blind samples, which included five samples of spores already in the spectral library, two samples of closely related Bacillus globigii 01 spores not in the library, and eight samples of nonbacterial materials, yielded 100% accuracy in distinguishing among bacterial/nonbacterial samples, membership in the library, and bacterial strains within the library.


Asunto(s)
Bacillus/aislamiento & purificación , Interpretación Estadística de Datos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Esporas Bacterianas/aislamiento & purificación , Acústica , Algoritmos , Bacillus/clasificación , Análisis de Componente Principal , Esporas Bacterianas/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA