Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Med ; 93: 29-37, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34920380

RESUMEN

INTRODUCTION: Interventional radiology procedures are associated with high skin dose exposure. The 2013/59/EURATOM Directive establishes that the equipment used for interventional radiology must have a device or a feature informing the practitioner of relevant parameters for assessing patient dose at the end of the procedure. This work presents and validates PyMCGPU-IR, a patient dose monitoring tool for interventional cardiology and radiology procedures based on MC-GPU. MC-GPU is a freely available Monte Carlo (MC) code of photon transport in a voxelized geometry which uses the computational power of commodity Graphics Processing Unit cards (GPU) to accelerate calculations. METHODOLOGIES: PyMCGPU-IR was validated against two different experimental set-ups. The first one consisted of skin dose measurements for different beam angulations on an adult Rando Alderson anthropomorphic phantom. The second consisted of organ dose measurements in three clinical procedures using the Rando Alderson phantom. RESULTS: The results obtained for the skin dose measurements show differences below 6%. For the clinical procedures the differences are within 20% for most cases. CONCLUSIONS: PyMCGPU-IR offers both, high performance and accuracy for dose assessment when compared with skin and organ dose measurements. It also allows the calculation of dose values at specific positions and organs, the dose distribution and the location of the maximum doses per organ. In addition, PyMCGPU-IR overcomes the time limitations of CPU-based MC codes.


Asunto(s)
Fotones , Radiología Intervencionista , Adulto , Humanos , Método de Montecarlo , Fantasmas de Imagen
2.
Acta Oncol ; 45(7): 978-88, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16982567

RESUMEN

In stereotactic body radiotherapy (SBRT) of lung tumors, dosimetric problems arise from: 1) the limited accuracy in the dose calculation algorithms in treatment planning systems, and 2) the motions with the respiration of the tumor during treatment. Longitudinal dose distributions have been calculated with Monte Carlo simulation (MC), a pencil beam algorithm (PB) and a collapsed cone algorithm (CC) for two spherical lung tumors (2 cm and 5 cm diameter) in lung tissue, in a phantom situation. Respiratory motions were included by a convolution method, which was validated. In the static situation, the PB significantly overestimates the dose, relative to MC, while the CC gives a relatively accurate estimate. Four different respiratory motion patterns were included in the dose calculation with the MC. A "narrowing" of the longitudinal dose profile of up to 20 mm (at about 90% dose level) is seen relative the static dose profile calculated with the PB.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/cirugía , Neoplasias Pulmonares/cirugía , Método de Montecarlo , Movimiento (Física) , Radiocirugia/métodos , Respiración , Algoritmos , Simulación por Computador , Relación Dosis-Respuesta en la Radiación , Humanos , Modelos Estadísticos , Modelos Teóricos , Dosis de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA