Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int Orthop ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012414

RESUMEN

PURPOSE: Robot-assisted total hip arthroplasty (RA-THA) helps with precise orientation of the prosthesis, but some RA-THA procedures are aborted intraoperatively and are converted to manual total hip arthroplasty (THA). This study aimed to analyse why RA-THA is sometimes aborted intraoperatively and to make recommendations accordingly. METHODS: A total of 429 consecutive Mako THA cases in our prospective database from August 2018 to June 2021 were included in our study. All robotic procedures aborted intraoperatively for any reason were recorded. The patients' demographics, diagnoses, and surgeons' information were included in the statistical analysis to pinpoint the risk factors for intraoperative robot to manual conversion. RESULTS: Intraoperative RA-THA abortions occurred in 17 cases (3.96%) and the patients had to be converted to manual THA. The adverse events leading to intraoperative abortions included pelvic array loosening or malposition (5, 1.17%), inaccurate bone mapping or construction (6, 1.40%), inaccurate initial registration (4, 0.93%), and other reasons (2, 0.47%). CONCLUSION: Robot-related adverse events could be found in all perioperative steps of RA-THA, and some of these events might result in intraoperative abortion. Complex hip disease was a statistically significant factor for an increased risk of intraoperative abortion of RA-THA. Standardized surgical procedures and preoperative assessments can be helpful in reducing the rate of RA-THA abortions.

2.
Front Vet Sci ; 11: 1398728, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38872803

RESUMEN

The poultry ovary is a preferred target for E. coli and Salmonella infection of tissues, and lipopolysaccharide (LPS) is a critical molecule in infecting the organism and interfering with cell function, invading the ovaries through the cloaca and interfering with progesterone (P4) secretion by follicular granulosa cells (GCs), seriously affecting the health of breeding geese. miRNAs are small, non-coding RNAs with a variety of important regulatory roles. To investigate the mechanism of miR-10a-5p mediated LPS inhibition of progesterone synthesis in goose granulosa cells, Yangzhou geese at peak laying period were selected as experimental animals to verify the expression levels of genes and transcription factors related to progesterone synthesis. In this study, bioinformatic predictions identified miR-10a-5p target gene CYP11A1, and genes and transcription factors related to the sex steroid hormone secretion pathway were screened. We detected that LPS inhibited CYP11A1 expression while increasing miR-10a-5p expression in vivo. Progesterone decreased significantly in goose granulosa cells treatment with 1 µg/mL LPS for 24 h, while progesterone-related genes and regulatory factors were also suppressed. We also determined that the downregulation of miR-10a-5p led to CYP11A1 expression. Overexpression of miR-10a-5p suppressed LPS-induced CYP11A1 expression, resulting in decreased progesterone secretion. Our findings indicated that miR-10a-5p was up-regulated by LPS and inhibited progesterone synthesis by down-regulating CYP11A1. This study provides insight into the molecular mechanisms regulating geese reproduction and ovulation.

3.
RSC Adv ; 14(28): 19718-19725, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38899034

RESUMEN

The mechanical strength of magnesium implants undergoes a rapid decline after implantation due to bioabsorption, which can lead to the risk of rupture. To ensure sustained mechanical strength and initiate bioabsorption selectively upon specific external stimuli until the bone regains sufficient support, we developed a biosafe near-infrared light (NIR)-sensitive polymer coating using polycaprolactone (PCL) and Ti3C2 (MXenes). The synthetic MXene powders were characterized using SEM, EDS, and XRD, and the amount of MXenes had a proliferation-promoting effect on MC3T3-E1, as observed through cell assays. The PCL-MXene coating was successfully prepared on the magnesium surface using the casting coating method, and it can protect the magnesium surface for up to 28 days by decreasing the corrosion ratio. However, the coating can be easily degraded after exposure to NIR light for 20 minutes to expose the magnesium substrate, especially in a liquid environment. Meanwhile, the magnesium implant with the PCL-MXene coating has no cytotoxicity toward MC3T3-E1. These findings can provide a new solution for the development of controlled degradation implants.

5.
J Agric Food Chem ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602372

RESUMEN

Peptide-based self-assembled nanostructures are emerging vehicles for nutrient delivery and interface engineering. The present study screened eight ß-lactoglobulin (ß-Lg) derived peptides and found that two reducing peptides [EQSLVCQCLV (EV-10) and VCQCLVR (VR-7)] demonstrated pH-dependent reversible fibrilization. EV-10 formed fibrils at pH 2.0 but became unordered aggregates at pH 7.0. VR-7 showed the opposite trend. Both peptides could undergo repetitive transitions between fibrils and unordered aggregates during consecutive pH-cycling. Fibrilization of both peptides was dominated by charges carried by N- and C-terminals. Both fibrils were characterized by a cross-ß sheet structure where the ß-sheet was arranged in an antiparallel manner. Fe3+ was reduced by Cys and EV-10 (pH 5.0 and 7.0) simultaneously upon mixing. In contrast, EV-10 fibrils released Fe3+ reducing capacity progressively, which were beneficial to long-term protection Fe2+. The EV-10 fibrils remained intact after simulated gastric digestion and finally dissociated after intestinal digestion. The results shed light on the mechanisms of fibrilization of ß-Lg derived peptides. This study was beneficial to the rational design of smart pH-responsive materials for drug delivery and antioxidants for nutrients susceptible to oxidation.

6.
J Nutr Health Aging ; 28(6): 100238, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663039

RESUMEN

OBJECTIVES: 'Super-agers,' individuals over 80 with memory abilities comparable to those 20-30 years younger. The relationship between super-agers and dietary acid load (DAL) is an area that warrants further investigation. We aim to examine the link between DAL and super-agers and assess DAL's effects on cognitive functions across different age groups and cognitive domains. DESIGN: Employing a cross-sectional analysis of the 2011-2014 National Health and Nutrition Examination Survey (NHANES) data, we utilized propensity score analysis and multivariate-adjusted regression to mitigate confounding factors. SETTING: Older adults aged 60 and above in the United States. PARTICIPANTS: Our primary analysis encompassed 985 older adults, supplemented by a sensitivity analysis with 2,522 participants. MEASUREMENTS: DAL was assessed through potential renal acid load (PRAL), estimated net acid excretion (NAEes), and net endogenous acid production (NEAP) indices. RESULTS: Super-agers demonstrate a preference for alkaline diets, shown by their lower DAL indices. After inverse probability of treatment weighting (IPTW), multivariate-adjusted logistic regression reveals that each unit reduction in NAEes and PRAL increases the chances of being a super-ager by 3.9% and 3.0%, respectively. The DAL's impact on cognitive function becomes more pronounced with age. Lower PRAL and NAEes scores are significantly linked to higher situational memory and overall cognitive performance scores in those over 70, with these effects being even more pronounced in participants over 80. CONCLUSION: This research pioneers in demonstrating that super-agers prefer an alkaline diet, highlighting the potential role of alkaline diet in countering cognitive decline associated with aging.


Asunto(s)
Cognición , Dieta , Encuestas Nutricionales , Puntaje de Propensión , Humanos , Masculino , Femenino , Estudios Transversales , Cognición/efectos de los fármacos , Cognición/fisiología , Dieta/estadística & datos numéricos , Dieta/métodos , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Estados Unidos , Ácidos
7.
J Arthroplasty ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38508345

RESUMEN

BACKGROUND: There is an increasing number of different brands of robotic total knee arthroplasty (TKA) systems. Most robotic TKA systems share the same coronal alignment, while the definitions of sagittal alignment vary. The purpose of this study was to investigate whether these discrepancies impact the sagittal alignment of the lower extremity. METHODS: A total of 72 lower extremity computed tomography scans were included in our study, and 3-dimensional models were obtained using software. A total of 7 brands of robotic TKA systems were included in the study. The lower extremity axes were defined based on the surgical guide for each implant. We also set the intramedullary axis as a reference to evaluate the discrepancies in sagittal alignment of each brand of robotic system. RESULTS: On the femoral side, the axis definition was the same for all 7 robotic TKA systems. The robotic TKA axes showed a 2.41° (1.58°, 3.38°) deviation from the intramedullary axis. On the tibial side, the 7 robots had different axis definitions. The tibial mechanical axis of 6 of the TKA systems was more flexed than that of the intramedullary axis, which means the posterior tibial slope was decreased while the tibial mechanical axis of the remaining system was more extended. CONCLUSIONS: The sagittal alignment of the lower extremity for 7 different brands of robotic TKA systems differed from each other and all deviated from the intramedullary axis. Surgeons should be aware of this discrepancy when using different brands of robotic TKA systems to avoid unexpected sagittal alignment and corresponding adverse clinical outcomes. LEVEL OF EVIDENCE: Level IV, Therapeutic Study.

8.
Vet Res ; 55(1): 40, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532469

RESUMEN

The interaction between viral components and cellular proteins plays a crucial role in viral replication. In a previous study, we showed that the 3'-untranslated region (3'-UTR) is an essential element for the replication of duck hepatitis A virus type 1 (DHAV-1). However, the underlying mechanism is still unclear. To gain a deeper understanding of this mechanism, we used an RNA pull-down and a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry assay to identify new host factors that interact with the 3'-UTR. We selected interleukin-2 enhancer binding factor 2 (ILF2) for further analysis. We showed that ILF2 interacts specifically with both the 3'-UTR and the 3D polymerase (3Dpol) of DHAV-1 through in vitro RNA pull-down and co-immunoprecipitation assays, respectively. We showed that ILF2 negatively regulates viral replication in duck embryo fibroblasts (DEFs), and that its overexpression in DEFs markedly suppresses DHAV-1 replication. Conversely, ILF2 silencing resulted in a significant increase in viral replication. In addition, the RNA-dependent RNA polymerase (RdRP) activity of 3Dpol facilitated viral replication by enhancing viral RNA translation efficiency, whereas ILF2 disrupted the role of RdRP in viral RNA translation efficiency to suppress DHAV-1 replication. At last, DHAV-1 replication markedly suppressed the expression of ILF2 in DEFs, duck embryo hepatocytes, and different tissues of 1 day-old ducklings. A negative correlation was observed between ILF2 expression and the viral load in primary cells and different organs of young ducklings, suggesting that ILF2 may affect the viral load both in vitro and in vivo.


Asunto(s)
Virus de la Hepatitis del Pato , Hepatitis Viral Animal , Infecciones por Picornaviridae , Enfermedades de las Aves de Corral , Animales , Interleucina-2/genética , ARN Polimerasa Dependiente del ARN/genética , Regulación de la Expresión Génica , ARN Viral/genética , Patos/genética , Infecciones por Picornaviridae/veterinaria
9.
Pest Manag Sci ; 80(8): 3852-3860, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38511626

RESUMEN

BACKGROUND: Reproductive diapause serves as a valuable strategy enabling insects to survive unfavorable seasonal conditions. However, forcing insects into diapause when the environment is conducive to their well-being can cause them to miss out on seasonal opportunities for reproduction. This outcome not only reduces insect populations but also minimizes crop losses caused by insect feeding. Therefore, altering the timing of diapause initiation presents a potential strategy for managing pests. In this study, we examined the possible role of the Insulin Receptor 1 (InR1) in controlling reproductive diapause entry in the male cabbage beetle, Colaphellus bowringi. RESULTS: Compared to short-day (SD) conditions, long-day (LD) conditions led to reproductive diapause of C. bowringi males, characterized by arrested gonad development, increased Triglyceride (TG) accumulation, and upregulated expression of diapause protein 1 and genes associated with lipogenesis and stress tolerance. Upon employing RNA interference to knock down InR1 under SD conditions, males destined for reproduction were compelled into diapause, evidenced by arrested gonadal development, accumulation of TG, and elevated expression of diapause-related genes. Intriguingly, despite the common association of the absence of juvenile hormone (JH) with reproductive diapause in females, the knockdown of InR1 in males did not significant affect the expression of JH biosynthesis and JH response gene. CONCLUSION: The study highlight InR1 is a key factor involved in regulating male reproductive diapause in C. bowringi. Consequently, targeting insulin signaling could be a viable approach to perturb diapause timing, offering a promising strategy for managing pests with reproductive diapause capabilities. © 2024 Society of Chemical Industry.


Asunto(s)
Escarabajos , Diapausa de Insecto , Receptor de Insulina , Reproducción , Animales , Masculino , Escarabajos/fisiología , Escarabajos/crecimiento & desarrollo , Escarabajos/genética , Receptor de Insulina/metabolismo , Receptor de Insulina/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Fotoperiodo , Femenino
10.
Sensors (Basel) ; 24(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38257631

RESUMEN

Intelligent vehicles are constrained by road, resulting in a disparity between the assumed six degrees of freedom (DoF) motion within the Visual Simultaneous Localization and Mapping (SLAM) system and the approximate planar motion of vehicles in local areas, inevitably causing additional pose estimation errors. To address this problem, a stereo Visual SLAM system with road constraints based on graph optimization is proposed, called RC-SLAM. Addressing the challenge of representing roads parametrically, a novel method is proposed to approximate local roads as discrete planes and extract parameters of local road planes (LRPs) using homography. Unlike conventional methods, constraints between the vehicle and LRPs are established, effectively mitigating errors arising from assumed six DoF motion in the system. Furthermore, to avoid the impact of depth uncertainty in road features, epipolar constraints are employed to estimate rotation by minimizing the distance between road feature points and epipolar lines, robust rotation estimation is achieved despite depth uncertainties. Notably, a distinctive nonlinear optimization model based on graph optimization is presented, jointly optimizing the poses of vehicle trajectories, LPRs, and map points. The experiments on two datasets demonstrate that the proposed system achieved more accurate estimations of vehicle trajectories by introducing constraints between the vehicle and LRPs. The experiments on a real-world dataset further validate the effectiveness of the proposed system.

11.
Org Lett ; 26(3): 702-707, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38206074

RESUMEN

We report herein an efficient NHC-catalyzed kinetic resolution of acyclic tertiary propargylic alcohols that provides them in high to excellent enantioselectivity. This is the first example of kinetic resolution realized by enantioselective acylation. The recovered enantioenriched alcohols can be facilely converted into other valuable compounds such as densely functionalized tertiary alcohols and carbmates in high yields and excellent stereopurity. Density functional theory calculations were performed to determine the reaction mechanism and to understand the origin of enantiodiscrimination.

12.
Ticks Tick Borne Dis ; 15(2): 102307, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38194758

RESUMEN

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a bunyavirus that causes SFTS, with a case fatality rate of up to 30 %. The innate immune system plays a crucial role in the defense against SFTSV; however, the impact of viral propagation of STFSV on the innate immune system remains unclear. Although proteomics analysis revealed that the expression of the downregulator of transcription 1 (DR1) increased after SFTSV infection, the specific change trend and the functional role of DR1 during viral infection remain unelucidated. In this study, we demonstrate that DR1 was highly expressed in response to SFTSV infection in HEK 293T cells using qRT-PCR and Western blot analysis. Furthermore, viral replication significantly increased the expression of various TLRs, especially TLR9. Our data indicated that DR1 positively regulated the expression of TLRs in HEK 293T cells, DR1 overexpression highly increased the expression of numerous TLRs, whereas RNAi-mediated DR1 silencing decreased TLR expression. Additionally, the myeloid differentiation primary response gene 88 (MyD88)-dependent or TIR-domain-containing adaptor inducing interferon-ß (TRIF)-dependent signaling pathways were highly up- and downregulated by the overexpression and silencing of DR1, respectively. Finally, we report that DR1 stimulates the expression of TLR7, TLR8, and TLR9, thereby upregulating the TRIF-dependent and MyD88-dependent signaling pathways during the SFTSV infection, attenuating viral replication, and enhancing the production of type I interferon and various inflammatory factors, including IL-1ß, IL-6, and IL-8. These results imply that DR1 defends against SFTSV replication by inducing the expression of TLR7, TLR8, and TLR9. Collectively, our findings revealed a novel role and mechanism of DR1 in mediating antiviral responses and innate immunity.


Asunto(s)
Infecciones por Bunyaviridae , Phlebovirus , Fosfoproteínas , Transducción de Señal , Factores de Transcripción , Animales , Humanos , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Regulación hacia Abajo , Células HEK293 , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Fosfoproteínas/metabolismo , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 8/metabolismo , Receptor Toll-Like 9/metabolismo , Factores de Transcripción/metabolismo , Phlebovirus/fisiología , Infecciones por Bunyaviridae/inmunología , Infecciones por Bunyaviridae/metabolismo , Infecciones por Bunyaviridae/virología
13.
J Hazard Mater ; 466: 133571, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38266588

RESUMEN

Microbe-mediated DBP (dibutyl phthalate) mineralization is acknowledged to be affected by diverse extracellular factors. However, little is known about the regulatory effects from quorum sensing (QS) signals. In this study, extracellularly applied QS signals A-like (hydroxymethyl dihydrofuran) was discovered to significantly enhance DBP degradation efficiency in Streptomyces sp. SH5. Monobutyl phthalate, protocatechuic acid and beta-ketoadipate were discovered as degradation intermediates by HPLC-TOF-MS/MS. Multi-omics analysis revealed the up-regulation of multiple hydrolases, transferases and decarboxylases that potentially contributed to A-like accelerated DBP degradation. Transcription of Orf2708, an orthologue of global transcriptional activator, was significantly induced by A-like. Orf2708 was demonstrated to interact specifically with the promoter of hydrolase orf2879 gene by EMSA, and the overexpression of orf2879 led to an enhanced DBP degradation in SH5. Taken together with the molecular docking studies showing the stability of ligand-receptor complex of A-like and its potential receptor Orf3712, a hierarchical regulatory cascade underlying the QS signal mediated DBP degradation was proposed as A-like/Orf3712 duplex formation, enhanced orf2708 expression and the downstream specific activation of hydrolase Orf2879. Our study presents the first evidence of GBLs-type promoted DBP degradation among bacteria, and the elucidated signal transduction path indicates a universal application potential of this activation strategy.


Asunto(s)
Percepción de Quorum , Espectrometría de Masas en Tándem , Simulación del Acoplamiento Molecular , Dibutil Ftalato/metabolismo , Hidrolasas/metabolismo , Transducción de Señal
14.
Int Orthop ; 48(3): 761-772, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37962579

RESUMEN

PURPOSE: Robot-assisted surgical systems for performing total knee arthroplasty (TKA) have gained significant attention. This study was designed to compare the surgical outcomes in primary TKA surgery between the recently developed "SkyWalker" robot system and the more commonly used MAKO robot. METHODS: A total of 75 patients undergoing primary TKA surgery by the same surgical team were included in this study, with 30 patients in the "SkyWalker" group and 45 patients in the "MAKO" group. We documented the osteotomy plan for both robotic systems. The lower limb alignment angles were evaluated by postoperative radiographic assessment. The operation time, estimated blood loss, postoperative hospital stays, and changes in laboratory indexes were collected during hospitalization. In addition, a comparative evaluation of knee functional assessments and complications was conducted during six month and one year follow-ups. RESULTS: There were no significant differences between the two groups in terms of the accuracy of restoring lower limb alignment, estimated blood loss, or operation time. The knee function assessments at six months and one year postoperatively were similar in both groups. Except for day three after surgery, the level of interleukin-6 (IL-6) and the change in IL-6 (∆IL-6) from preoperative baseline were higher in the "SkyWalker" group than in the MAKO group (median: 20.53 vs. 14.17, P=0.050 and median: 17.30 vs. 10.09, P=0.042, respectively). Additionally, one patient from the MAKO group underwent revision surgery at nine months postoperatively due to ongoing periprosthetic discomfort. CONCLUSIONS: The newly developed "SkyWalker" robot showed comparable efficacy to the MAKO robot in terms of lower limb alignment accuracy and postoperative six month and one year follow-up of clinically assessed resumption of knee function.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Osteoartritis de la Rodilla , Procedimientos Quirúrgicos Robotizados , Robótica , Humanos , Artroplastia de Reemplazo de Rodilla/efectos adversos , Estudios de Seguimiento , Procedimientos Quirúrgicos Robotizados/efectos adversos , Interleucina-6 , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/cirugía , Osteoartritis de la Rodilla/cirugía
15.
Int J Biol Macromol ; 256(Pt 2): 128269, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38029912

RESUMEN

Histone acetylation, a crucial epigenetic mechanism, has been suggested to play a role in diapause regulation, but this has not been confirmed through gene loss-of-function studies. In this work, we investigated the involvement of MYST family genes, which are key writers of histone acetylation, in initiating reproductive diapause using the cabbage beetle Colaphellus bowringi as a model. We identified C. bowringi orthologs of MYST, including Tip60, KAT6A, KAT7, and KAT8, from previous transcriptomes. Analyses of phylogenetic trees and protein domains indicated that these MYST proteins are structurally conserved across animal species. Expression of these MYST genes was found to be enriched in heads and ovaries of C. bowringi. Under reproductive photoperiod conditions, RNAi targeting MYST genes, especially KAT8, suppressed ovarian growth and yolk deposition, resembling the characteristics of diapausing ovaries. Additionally, KAT8 knockdown led to the upregulation of diapause-related genes, such as heat shock proteins and diapause protein 1, and the emergence of diapause-like guts. Moreover, KAT8 knockdown reduced the expression of a crucial enzyme involved in juvenile hormone (JH) biosynthesis, likely due to decreased H4K16ac levels. Consequently, our findings suggest that MYST family genes, specifically KAT8, influence the JH signal, thereby regulating the initiation of reproductive diapause.


Asunto(s)
Escarabajos , Diapausa de Insecto , Diapausa , Animales , Diapausa de Insecto/genética , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Filogenia , Histonas/genética , Histonas/metabolismo , Escarabajos/genética
16.
Heliyon ; 9(8): e19318, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37664705

RESUMEN

Background: Solid pseudopapillary neoplasms (SPNs) are uncommon tumors of low malignancy with a generally favorable prognosis, mostly originating from the pancreas. To date, 12 cases of SPNs with a primary ovarian origin (SPN-Os) have been reported globally, and their detailed characteristics have not been fully elucidated. Case description: We reported the 13th SPN-O case, which occurred in a 52-year-old woman with an 18.5 cm left ovarian mass. Four imaging methods, including ultrasound, computed tomography, magnetic resonance imaging and positron emission tomography, were utilized before surgery. An elevated level of serum cancer antigen 125 was detected and a total hysterectomy plus bilateral salpingo-oophorectomy was performed. Microscopic examination revealed a typical solid pseudopapillary structure. The tumor cells were stained focally for pan-cytokeratin, synaptophysin, CD99 and CD10, while ß-catenin, vimentin and CD56 were diffusely expressed. The Ki-67 proliferation index was 3%, and immunohistochemical (IHC) staining for chromogranin-A, inhibin-a, and E-cadherin was negative. No evidence of recurrence or metastasis was observed by clinical and imaging data during a 5-month postoperative follow-up. Conclusion: This is a report of an unusual case of a primary ovarian SPN with an up-to-date review of SPN-Os. A minimum combination of imaging methods and IHC stains was proposed for SPN-Os, which may prove beneficial in clinical practice.

17.
J Bone Joint Surg Am ; 105(17): 1338-1343, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37410862

RESUMEN

BACKGROUND: Sagittal alignment determines the extension and flexion of knee prostheses in total knee arthroplasty (TKA). The definition of the sagittal axes may be different between the Mako TKA system (Stryker) and the conventional manual intramedullary approach. Whether there is any discrepancy between the 2 approaches has not been well studied. METHODS: We retrospectively analyzed 60 full-length computed tomographic (CT) scans of the lower extremities of 54 patients. The femur and tibia were modeled by using Mimics (Materialise). The Mako mechanical axes were determined according to the Mako TKA Surgical Guide. The manual intramedullary axes were determined according to the central axis of the tibial proximal and femoral distal medullary cavities. The femoral, tibial, and combined angular discrepancies were measured in the sagittal plane. RESULTS: On the femoral side, the Mako mechanical axis was more likely to be located in an extended position relative to the manual intramedullary axis (56 of 60 knees). The median angular discrepancy was 2.46° (interquartile range [IQR], 1.56° to 3.43° [range, -1.06° to 5.24°]). On the tibial side, the Mako mechanical axis was likely to be located in a flexed position relative to the manual intramedullary axis (57 of 60 knees). The median angular discrepancy was 2.40° (IQR, 1.87° to 2.84° [range, -0.79° to 4.20°]). The angular discrepancy of the femoral-tibial sagittal angle was 4.63° (IQR, 3.71° to 5.64° [range, 1.20° to 9.02°]). CONCLUSIONS: Compared with manual TKA, the Mako system is more likely to result in a decreased posterior tibial slope and extension of the femoral prosthesis. It may also influence the evaluation of lower-extremity extension and flexion. When using the Mako system, special attention should be given to these discrepancies. LEVEL OF EVIDENCE: Therapeutic Level IV . See Instructions for Authors for a complete description of levels of evidence.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Prótesis de la Rodilla , Osteoartritis de la Rodilla , Procedimientos Quirúrgicos Robotizados , Humanos , Artroplastia de Reemplazo de Rodilla/métodos , Estudios Retrospectivos , Tibia/diagnóstico por imagen , Tibia/cirugía , Fémur/diagnóstico por imagen , Fémur/cirugía , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/cirugía , Osteoartritis de la Rodilla/cirugía
18.
Cell Rep ; 42(7): 112781, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37421630

RESUMEN

Type VI secretion system is widely used in Gram-negative bacteria for injecting toxic effectors into neighboring prokaryotic or eukaryotic cells. Various effectors can be loaded onto the T6SS delivery tube via its core components: Hcp, VgrG, or PAAR. Here, we report 2.8-Å resolution cryo-EM structure of intact T6SS Hcp5-VgrG-PAAR cargo delivery system and crystal structure of unbound Hcp5 from B. fragilis NCTC 9343. Loading of Hcp5 hexameric ring onto VgrG causes expansion of its inner cavity and external surface, explaining how structural changes could be propagated to regulate co-polymerization and surrounding contractile sheath. High-affinity binding between Hcp and VgrG causes entropically unfavorable structuring of long loops. Furthermore, interactions between VgrG trimer and Hcp hexamer are asymmetric, with three of the six Hcp monomers exhibiting a major loop flip. Our study provides insights into the assembly, loading, and firing of T6SS nanomachine that contributes to bacterial inter-species competition and host interactions.


Asunto(s)
Sistemas de Secreción Tipo VI , Sistemas de Secreción Tipo VI/metabolismo , Proteínas Bacterianas/metabolismo
19.
Vet Res ; 54(1): 53, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391858

RESUMEN

The innate immune system provides a defense against invading pathogens by inducing various interferon (IFN)-stimulated genes (ISGs). We recently reported that tripartite motif protein 25 (TRIM25), an important ISG, was highly upregulated in duck embryo hepatocyte cells (DEFs) after infection with duck viral hepatitis A virus type 1 (DHAV-1). However, the mechanism of upregulation of TRIM25 remains unknown. Here we reported that interleukin-22 (IL-22), whose expression was highly facilitated in DEFs and various organs of 1-day-old ducklings after DHAV-1 infection, highly enhanced the IFN-λ-induced production of TRIM25. The treatment with IL-22 neutralizing antibody or the overexpression of IL-22 highly suppressed or facilitated TRIM25 expression, respectively. The phosphorylation of signal transducer and activator of transcription 3 (STAT3) was crucial for the process of IL-22 enhancing IFN-λ-induced TRIM25 production, which was suppressed by WP1066, a novel inhibitor of STAT3 phosphorylation. The overexpression of TRIM25 in DEFs resulted in a high production of IFNs and reduced DHAV-1 replication, whereas the attenuated expression of IFNs and facilitated replication of DHAV-1 were observed in the RNAi group, implying that TRIM25 defended the organism against DHAV-1 propagation by inducing the production of IFNs. In summary, we reported that IL-22 activated the phosphorylation of STAT3 to enhance the IFN-λ-mediated TRIM25 expression and provide a defense against DHAV-1 by inducing IFN production.


Asunto(s)
Virus de la Hepatitis A , Virus de la Hepatitis del Pato , Animales , Interferón lambda , Patos , Interleucinas , Interleucina-22
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA