Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
EMBO J ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256562

RESUMEN

Phosphorylation is a key post-translational modification regulating protein function and biological outcomes. However, the phosphorylation dynamics orchestrating mammalian oocyte development remains poorly understood. In the present study, we apply high-resolution mass spectrometry-based phosphoproteomics to obtain the first global in vivo quantification of mouse oocyte phosphorylation. Of more than 8000 phosphosites, 75% significantly oscillate and 64% exhibit marked upregulation during meiotic maturation, indicative of the dominant regulatory role. Moreover, we identify numerous novel phosphosites on oocyte proteins and a few highly conserved phosphosites in oocytes from different species. Through functional perturbations, we demonstrate that phosphorylation status of specific sites participates in modulating critical events including metabolism, translation, and RNA processing during meiosis. Finally, we combine inhibitor screening and enzyme-substrate network prediction to discover previously unexplored kinases and phosphatases that are essential for oocyte maturation. In sum, our data define landscape of the oocyte phosphoproteome, enabling in-depth mechanistic insights into developmental control of germ cells.

2.
Cell Prolif ; : e13733, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39245646

RESUMEN

The transition of chromatin configuration in mammalian oocytes from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN) is critical for acquiring the developmental competence. However, the genomic and epigenomic features underlying this process remain poorly understood. In the present study, we first establish the chromatin accessibility landscape of mouse oocytes from NSN to SN stage. Through the integrative analysis of multi-omics, we find that the establishment of DNA methylation in oocytes is independent of the dynamics of chromatin accessibility. In contrast, histone H3K4me3 status is closely associated with the dynamics of accessible regions during configuration transition. Furthermore, by focusing on the actively transcribed genes in NSN and SN oocytes, we discover that chromatin accessibility coupled with histone methylation (H3K4me3 and H3K27me3) participates in the transcriptional control during phase transition. In sum, our data provide a comprehensive resource for probing configuration transition in oocytes, and offer insights into the mechanisms determining chromatin dynamics and oocyte quality.

3.
Adv Sci (Weinh) ; 11(30): e2309184, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38868907

RESUMEN

It has been widely reported that obesity adversely impacts reproductive performance of females. However, the effects of maternal obesity on fetal germ cells remain poorly understood. In the present study, by employing a high-fat diet (HFD)-based mouse model, it is discovered that maternal obesity disrupts the chromosomal synapsis and homologous recombination during fetal oogenesis. Moreover, transcriptomic profiling reveales the potential molecular network controlling this process. Of note, the global hypermethylation of genomic DNA in fetal oocytes from obese mouse is detected. Importantly, time-restricted feeding (TRF) of obese mice not only ameliorate the meiotic defects, but also partly restore the epigenetic remodeling in fetal oocytes. In sum, the evidence are provided showing the deficit fetal oogenesis in obese mother, implicating a mechanism underlying the intergenerational effects of environmental insults. TRF may represent a potentially effective approach for mitigating fertility issues in obese patients.


Asunto(s)
Modelos Animales de Enfermedad , Epigénesis Genética , Meiosis , Obesidad Materna , Oocitos , Animales , Femenino , Ratones , Oocitos/metabolismo , Meiosis/genética , Epigénesis Genética/genética , Obesidad Materna/metabolismo , Obesidad Materna/genética , Embarazo , Dieta Alta en Grasa/efectos adversos , Oogénesis/genética , Ratones Endogámicos C57BL , Metilación de ADN/genética , Obesidad/genética , Obesidad/metabolismo
4.
J Ovarian Res ; 17(1): 23, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267939

RESUMEN

In fully grown oocytes, the genome is considered to be globally transcriptionally silenced. However, this conclusion is primarily derived from the results obtained through immunofluorescence staining or inferred from the highly condensed state of chromosomes, lacking more direct evidence. Here, by using a kethoxal-assisted single-stranded DNA sequencing (KAS-seq) approach, we investigated the landscape of single-strand DNA (ssDNA) throughout the genome and provided a readout of the activity and dynamics of transcription during oocyte meiotic maturation. In non-surrounded nucleolus (NSN) oocytes, we observed a robust KAS-seq signal, indicating the high transcriptional activity. In surrounded nucleolus (SN) oocytes, the presence of ssDNA still persists although the KAS-seq signal was relatively weak, suggesting the presence of transcription. Accompanying with the meiotic resumption, the transcriptional activity gradually decreased, and global repression was detected in matured oocytes. Moreover, we preformed the integrative genomics analysis to dissect the transcriptional dynamics during mouse oocyte maturation. In sum, the present study delineates the detailed transcriptional activity during mammalian oocyte maturation.


Asunto(s)
Genómica , Oocitos , Animales , Ratones , Mamíferos
5.
Mol Cell Proteomics ; 22(1): 100481, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36496143

RESUMEN

Meiotic maturation is an intricate and precisely regulated process orchestrated by various pathways and numerous proteins. However, little is known about the proteome landscape during oocytes maturation. Here, we obtained the temporal proteomic profiles of mouse oocytes during in vivo maturation. We successfully quantified 4694 proteins from 4500 oocytes in three key stages (germinal vesicle, germinal vesicle breakdown, and metaphase II). In particular, we discovered the novel proteomic features during oocyte maturation, such as the active Skp1-Cullin-Fbox pathway and an increase in mRNA decay-related proteins. Using functional approaches, we further identified the key factors controlling the histone acetylation state in oocytes and the vital proteins modulating meiotic cell cycle. Taken together, our data serve as a broad resource on the dynamics occurring in oocyte proteome and provide important knowledge to better understand the molecular mechanisms during germ cell development.


Asunto(s)
Proteoma , Proteómica , Ratones , Animales , Proteoma/metabolismo , Oogénesis , Oocitos/metabolismo , Núcleo Celular/metabolismo , Meiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA