Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ChemSusChem ; 17(4): e202301662, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38169145

RESUMEN

Perovskite solar cell (PSC) shows a great potential to become the next-generation photovoltaic technology, which has stimulated researchers to engineer materials and to innovate device architectures for promoting device performance and stability. As the power conversion efficiency (PCE) keeps advancing, the importance of exploring multifunctional materials for the PSCs has been increasingly recognized. Considerable attention has been directed to the design and synthesis of novel organic π-conjugated molecules, particularly the emerging curved ones, which can perform various unmatched functions for PSCs. In this review, the characteristics of three representative such curved π-conjugated molecules (fullerene, corannulene and helicene) and the recent progress concerning the application of these molecules in state-of-the-art PSCs are summarized and discussed holistically. With this discussion, we hope to provide a fresh perspective on the structure-property relation of these unique materials toward high-performance and high-stability PSCs.

2.
J Am Chem Soc ; 144(30): 13839-13850, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35862295

RESUMEN

Despite their multifaceted advantages, inverted perovskite solar cells (PSCs) still suffer from lower power conversion efficiencies (PCEs) than their regular counterparts, which is largely due to recombination energy losses (Eloss) that arise from the chemical, physical, and energy level mismatches, especially at the interfaces between perovskites and fullerene electron transport layers (ETLs). To address this problem, we herein introduce an aminium iodide derivative of a buckybowl (aminocorannulene) that is molecularly layered at the perovskite-ETL interface. Strikingly, besides passivating the PbI2-rich perovskite surface, the aminocorannulene enforces a vertical dipole and enhances the surface n-type character that is more compatible with the ETL, thus boosting the electron extraction and transport dynamics and suppressing interfacial Eloss. As a result, the champion PSC achieves an excellent PCE of over 22%, which is superior compared to that of the control device (∼20%). Furthermore, the device stability is significantly enhanced, owing to a lock-and-key-like grip on the mobile iodides by the buckybowls and the resultant increase of the interfacial ion-migration barrier. This work highlights the potential of buckybowls for the multifunctional surface engineering of perovskite toward high-performance and stable PSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA