RESUMEN
Natural polyphenols found in health supplements and drinks have antioxidant and anti-inflammatory properties. In particular, to determine the beneficial qualities of antioxidant drinks and beverages, consumers demand precise quantification of the total amount of polyphenols as on-site detection. Herein, we developed a new concept of portable beads suitable for the field detection available: colorimetric quantification of polyphenols equipped with color converting software applications in a smartphone or tablet PC. The yellowish beads contain ferric ions to react with polyphenol to produce blackish metal-phenolic complexes. It is simple to perform the detection procedure: dipping the beads in the analytical sample and out-taking a photo-converting into RGB color values and quantification of the existed polyphenol. The overall process was completed within 5 min. Compared with the Folin-Ciocalteu assay, which is a representative optical sensor kit for total phenolic content, the bead-based sensor showed a better limit of detection of 0.0415 mM for tannic acid and comparable sensing capability for a polyphenol-containing plant extract and brewed tea. The beads conserved the shape and sensitivity after months of storage or under environmental interference such as a change in the temperature.
RESUMEN
Brown and brown-like adipose tissues have attracted significant attention for their role in metabolism and therapeutic potential in diabetes and obesity. Despite compelling evidence of an interplay between adipocytes and lymphocytes, the involvement of these tissues in immune responses remains largely unexplored. This study explicates a newfound connection between neuroinflammation and brown- and bone marrow adipose tissue. Leveraging the use of [18F]F-AraG, a mitochondrial metabolic tracer capable of tracking activated lymphocytes and adipocytes simultaneously, we demonstrate, in models of glioblastoma and multiple sclerosis, the correlation between intracerebral immune infiltration and changes in brown- and bone marrow adipose tissue. Significantly, we show initial evidence that a neuroinflammation-adipose tissue link may also exist in humans. This study proposes the concept of an intricate immuno-neuro-adipose circuit, and highlights brown- and bone marrow adipose tissue as an intermediary in the communication between the immune and nervous systems. Understanding the interconnectedness within this circuitry may lead to advancements in the treatment and management of various conditions, including cancer, neurodegenerative diseases and metabolic disorders.
Asunto(s)
Tejido Adiposo Pardo , Enfermedades Neuroinflamatorias , Animales , Humanos , Tejido Adiposo Pardo/metabolismo , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Médula Ósea/metabolismo , Ratones , Masculino , Glioblastoma/patología , Glioblastoma/inmunología , Glioblastoma/metabolismo , Ratones Endogámicos C57BL , Femenino , Esclerosis Múltiple/patología , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/diagnóstico por imagen , Tomografía de Emisión de PositronesRESUMEN
Wound dressings are widely used to protect wounds and promote healing. The water absorption and antifriction properties of dressings are important for regulating the moisture balance and reducing secondary damages during dressing changes. Herein, we developed a hyaluronic acid (HA)-based foam dressing prepared via the lyophilization of photocrosslinked HA hydrogels with high water absorption and antiadhesion properties. To fabricate the HA-based foam dressing (HA foam), the hydroxyl groups of the HA were modified with methacrylate groups, enabling rapid photocuring. The resulting photocured HA solution was freeze-dried to form a porous structure, enhancing its exudate absorption capacity. Compared with conventional biopolymer-based foam dressings, this HA foam exhibited superior water absorption and antifriction properties. To assess the wound-healing potential of HA foam, animal experiments involving SD rats were conducted. Full-thickness defects measuring 2 × 2 cm2 were created on the skin of 36 rats, divided into four groups with 9 individuals each. The groups were treated with gauze, HA foam, CollaDerm®, and CollaHeal® Plus, respectively. The rats were closely monitored for a period of 24 days. In vivo testing demonstrated that the HA foam facilitated wound healing without causing inflammatory reactions and minimized secondary damages during dressing changes. This research presents a promising biocompatible foam wound dressing based on modified HA, which offers enhanced wound-healing capabilities and improved patient comfort and addresses the challenges associated with conventional dressings.
RESUMEN
Essential oils derived from plants are major ingredients in the medical and cosmetic industry. Here, we evaluated nine types of plant essential oils to identify potential candidates with antioxidant and elasticity-enhancing properties. Seven essential oils showed at least 10% radical scavenging activity at the highest concentration. Essential oils extracted from Aster glehnii, Cinnamomum cassia, Citrus unshiu, Juniperus chinensis L., and Juniperus chinensis var. sargentii significantly enhanced fibroblast viability, and oils from Cit. unshiu, J. chinensis L., and J. chinensis var. sargentii significantly increased cell proliferation and migration. Expression of extracellular matrix proteins, including collagen 1, collagen 3, and elastin, were upregulated by J. chinensis L. and J. chinensis var. sargentii oil, which also significantly enhanced the contractile activity of skin cells in a three-dimensional gel contraction assay. The results suggest that J. chinensis L. and J. chinensis var. sargentii essential oils may be potential anti-wrinkling and anti-oxidative agents for future consideration of use in the medical and cosmetic industry.
Asunto(s)
Juniperus , Aceites Volátiles , Aceites Volátiles/farmacología , Antioxidantes/farmacología , Aceites de Plantas , ColágenoRESUMEN
Third-generation biomass production utilizing microalgae exhibits sustainable and environmentally friendly attributes, along with significant potential as a source of physiologically active compounds. However, the process of screening and localizing strains that are capable of producing high-value-added substances necessitates a significant amount of effort. In the present study, we have successfully isolated the indigenous marine diatom Odontella aurita OAOSH22 from the east coast of Korea. Afterwards, comprehensive analysis was conducted on its morphological, molecular, and biochemical characteristics. In addition, a series of experiments was conducted to analyze the effects of various environmental factors that should be considered during cultivation, such as water temperature, salinity, irradiance, and nutrients (particularly nitrate, silicate, phosphate, and iron). The morphological characteristics of the isolate were observed using optical and electron microscopes, and it exhibited features typical of O. aurita. Additionally, the molecular phylogenetic inference derived from the sequence of the small-subunit 18S rDNA confirmed the classification of the microalgal strain as O. aurita. This isolate has been confirmed to contain 7.1 mg g-1 dry cell weight (DCW) of fucoxanthin, a powerful antioxidant substance. In addition, this isolate contains 11.1 mg g-1 DCW of eicosapentaenoic acid (EPA), which is one of the nutritionally essential polyunsaturated fatty acids. Therefore, this indigenous isolate exhibits significant potential as a valuable source of bioactive substances for various bio-industrial applications.
Asunto(s)
Diatomeas , Microalgas , Ácido Eicosapentaenoico , Diatomeas/química , Filogenia , República de CoreaRESUMEN
In this review, we provide a brief synopsis of the connections between adipose tissue and metabolic health and highlight some recent developments in understanding and exploiting adipocyte biology. Adipose tissue plays critical roles in the regulation of systemic glucose and lipid metabolism and secretes bioactive molecules possessing endocrine, paracrine, and autocrine functions. Dysfunctional adipose tissue has a detrimental impact on metabolic health and is intimately involved in key aspects of metabolic diseases such as insulin resistance, lipid overload, inflammation, and organelle stress. Differences in the distribution of fat depots and adipose characteristics relate to divergent degrees of metabolic dysfunction found in metabolically healthy and unhealthy obese individuals. Thermogenic adipocytes increase energy expenditure via mitochondrial uncoupling or adenosine triphosphate-consuming futile substrate cycles, while functioning as a metabolic sink and participating in crosstalk with other metabolic organs. Manipulation of adipose tissue provides a wealth of opportunities to intervene and combat the progression of associated metabolic diseases. We discuss current treatment modalities for obesity including incretin hormone analogs and touch upon emerging strategies with therapeutic potential including exosome-based therapy, pharmacological activation of brown and beige adipocyte thermogenesis, and administration or inhibition of adipocyte-derived factors.
RESUMEN
Oxytocin (OXT) plays a significant role during pregnancy, especially toward the end of pregnancy. Some studies have reported that OXT is involved in the stimulation of steroidogenesis in several organs. However, the effects of OXT on placental steroidogenesis have not yet been established. In this study, we investigated the regulation of steroid hormones and steroidogenic enzymes by OXT-associated signaling in vitro and in vivo. OXT increased the gene expression of steroidogenic enzymes, which convert pregnenolone to progesterone and dehydroepiandrosterone (DHEA) in vitro. In OXT-administered pregnant rats, pregnenolone and DHEA levels were significantly enhanced in the plasma and the expression of the enzymes synthesizing DHEA, testosterone, and estradiol (E2) was increased in placental tissues. Furthermore, OXT was found to affect placental cell differentiation, which is closely related to steroid hormone synthesis. After treatment of the pregnant rats with atosiban, an antagonist of the OXT receptor, the concentration of E2 in the plasma and the expression of E2-synthesizing enzyme were reduced. This regulation may be due to OXT-mediated differentiation, because OXT increases the expression of corticotropin-releasing hormone, which is a biomarker of placental cell differentiation. Our findings suggest that OXT contributes to maintaining pregnancy by regulating the differentiation of placental cells and steroidogenesis during pregnancy.
Asunto(s)
Oxitocina , Placenta , Embarazo , Femenino , Ratas , Animales , Oxitocina/metabolismo , Oxitocina/farmacología , Placenta/metabolismo , Progesterona/metabolismo , Estradiol/metabolismo , Esteroides/metabolismo , Pregnenolona/metabolismo , DeshidroepiandrosteronaRESUMEN
OBJECTIVE: Cold stimuli trigger the conversion of white adipose tissue into beige adipose tissue, which is capable of non-shivering thermogenesis. However, what process drives this activation of thermogenesis in beige fat is not well understood. Here, we examine the ER protein NNAT as a regulator of thermogenesis in adipose tissue. METHODS: We investigated the regulation of adipose tissue NNAT expression in response to changes in ambient temperature. We also evaluated the functional role of NNAT in thermogenic regulation using Nnat null mice and primary adipocytes that lack or overexpress NNAT. RESULTS: Cold exposure or treatment with a ß3-adrenergic agonist reduces the expression of adipose tissue NNAT in mice. Genetic disruption of Nnat in mice enhances inguinal adipose tissue thermogenesis. Nnat null mice exhibit improved cold tolerance both in the presence and absence of UCP1. Gain-of-function studies indicate that ectopic expression of Nnat abolishes adrenergic receptor-mediated respiration in beige adipocytes. NNAT physically interacts with the ER Ca2+-ATPase (SERCA) in adipocytes and inhibits its activity, impairing Ca2+ transport and heat dissipation. We further demonstrate that NHLRC1, an E3 ubiquitin protein ligase implicated in proteasomal degradation of NNAT, is induced by cold exposure or ß3-adrenergic stimulation, thus providing regulatory control at the protein level. This serves to link cold stimuli to NNAT degradation in adipose tissue, which in turn leads to enhanced SERCA activity. CONCLUSIONS: Our study implicates NNAT in the regulation of adipocyte thermogenesis.
Asunto(s)
Adipocitos Beige , Animales , Ratones , Adipocitos/metabolismo , Adipocitos Beige/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Termogénesis/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Retículo Endoplásmico/metabolismoRESUMEN
The purpose of this study was to investigate lipid metabolism in the placenta of gestational diabetes mellitus individuals and to evaluate its effect on the fetus. We examined the expression of lipogenesis- and lipolysis-related proteins in the in vitro and in vivo gestational diabetes mellitus placenta models. The levels of sterol regulatory element binding protein-1c were increased, and fat accumulated more during early hyperglycemia, indicating that lipogenesis was stimulated. When hyperglycemia was further extended, lipolysis was activated due to the phosphorylation of hormone-sensitive lipase and expression of adipose triglyceride lipase. In the animal model of gestational diabetes mellitus and in the placenta of gestational diabetes mellitus patients during the extended stage of gestational diabetes mellitus, the expression of sterol regulatory element binding protein-1c decreased and the deposition of fat increased. Similar to the results obtained in the in vitro study, lipolysis was enhanced in the animal and human placenta of extended gestational diabetes mellitus. These results suggest that fat synthesis may be stimulated by lipogenesis in the placenta when the blood glucose level is high. Subsequently, the accumulated fat can be degraded by lipolysis and more fat and its metabolites can be delivered to the fetus when the gestational diabetes mellitus condition is extended at the late stage of gestation. Imbalanced fat metabolism in the placenta and fetus of gestational diabetes mellitus patients can cause metabolic complications in the fetus, including fetal macrosomia, obesity, and type 2 diabetes mellitus.
Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Hiperglucemia , Humanos , Embarazo , Femenino , Animales , Diabetes Gestacional/metabolismo , Metabolismo de los Lípidos , Placenta/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Hiperglucemia/metabolismoRESUMEN
Preeclampsia (PE) is a complication of pregnancy and is characterized by hypertension and proteinuria, threatening both the mother and the fetus. However, the etiology of PE has not yet been fully understood. Since the imbalance of steroid hormones is associated with the pathogenesis of PE, investigating steroidogenic mechanisms under various PE conditions is essential to understand the entire spectrum of pregnancy disorders. Therefore, the current study established three PE in vitro and in vivo models, and compared the levels of steroid hormones and steroidogenic enzymes within them. In cellular PE models induced by hypoxia, NnitroLarginine methyl ester hydrocholride (LNAME) and catecholomethyltransferase inhibitor, the levels of steroid hormones, including pregnenolone (P5), progesterone (P4), dehydroepiandrosterone (DHEA) and testosterone tended to decrease during steroidogenesis. Injection of LNAME in pregnant rats led to a reduction in the levels of estradiol and P4 through regulation of cholesterol sidechain cleavage enzyme (CYP11A1) and 3ßhydroxysteroid dehydrogenase/δ5 4isomerase type 1 (HSD3B1), whereas rats treated with COMTI exhibited elevated levels of P5 and DHEA by regulation of the CYP11A1 and aromatase cytochrome P450 (CYP19A1) in the placenta and plasma. The reduced uterine perfusion pressure operation decreased CYP11A1 and increased CYP19A1 expression in placental tissues, whereas steroid hormone levels were not altered. In conclusion, the results of the present study suggest that the induction of PE conditions dysregulates the steroid hormones via regulation of steroidogenic enzymes, depending on specific PE symptoms. These findings can contribute to the development of novel diagnostic and therapeutic modalities for PE, by monitoring and supplying appropriate levels of steroid hormones.
Asunto(s)
Hormonas/metabolismo , Modelos Biológicos , Placenta/metabolismo , Preeclampsia/metabolismo , Esteroides/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Preeclampsia/patología , EmbarazoRESUMEN
Preeclampsia (PE) is a pregnancy-specific hypertensive syndrome recognized as the leading cause of maternal and fetal morbidity and mortality worldwide. Painful blood-collection procedures or low accuracy of non-invasive approaches require faster, patient-friendly, and more sensitive diagnostic technologies. Here we report a painless, highly sensitive detection platform using nanoporous microneedles (nMNs) that enables rapid capture of biomarkers present at sub-nanogram levels. The highly porous nanostructures on the nMN surface were prepared by anodization of aluminum MN and then functionalized by immobilization of capture antibodies to detect target biomarkers based on an immunoassay method. The immuno-functionalized nMN array demonstrated rapid capture of an estrogen (E2) biomarker for PE following a 1-min incubation and exhibited a concentration-dependent change in fluorescence intensity over the E2 range of 0.5 ng mL-1 to 1000 ng mL-1 after treatment with fluorescence-detection antibodies. Remarkably, the nMN patch selectively detected sub-nanogram-levels of E2 in subcutaneous interstitial fluid from rats with increased diagnostic accuracy as compared with commercial immunoassay kits. This bio-functionalized nMN platform showed improved biosensing capability for multiple PE-related biomarkers, including hormones and proteins. Furthermore, this painless method demonstrated efficacy as a point-of-need diagnostic platform using portable smartphone-based fluorescence microscope to obtain fluorescence images of biomarker-captured nMN arrays.
Asunto(s)
Técnicas Biosensibles , Preeclampsia , Animales , Biomarcadores , Femenino , Humanos , Inmunoensayo , Preeclampsia/diagnóstico , Embarazo , Ratas , Teléfono InteligenteRESUMEN
The steroid hormones act by binding to their receptors and subsequently interacting with coactivators. Several classes of coactivators have been identified and shown to be essential in estradiol (E2) responsiveness. The major coregulators are the p160 steroid receptor coactivator (SRC) family. Although the function of SRCs in other organs has been well studied, it has not been thoroughly studied in the placenta. In addition, the correlation between preeclampsia (PE) and SRCs has not been examined previously. Therefore, we compared the expression patterns of SRCs in normal and PE placentas. In human PE placental tissues, SRC-1 mRNA, and protein levels were downregulated in the PE group. In addition, to assess the expression of SRCs in a PE environment, we used Reduced Uterine Perfusion Pressure (RUPP) model and placental cells were cultured in hypoxia condition. SRC-1 proteins were reduced in the placenta of PE-like rat RUPP model. Furthermore, SRCs proteins were significantly downregulated in hypoxia-grown placental cells. To examine the interaction between estrogen receptors (ERs) and SRC-1 protein, we performed co-immunoprecipitation. The interaction of SRC-1 with ERα was significantly stronger than that with ERß. In PE placenta, the interaction of both ERα and ERß with SRC-1 was stronger than that in normal placenta. In summary, our results demonstrate that expression levels of SRC-1, not SRC-2 and SRC-3, were decreased in hypoxia-induced PE placenta, which may further reduce the signaling of sex steroid hormones such as E2. The dysregulated signaling of E2 by SRC-1 expression could be associated with the PE placental symptoms of patients.
Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Coactivador 1 de Receptor Nuclear/biosíntesis , Placenta/metabolismo , Preeclampsia/metabolismo , Adulto , Animales , Femenino , Humanos , Coactivador 1 de Receptor Nuclear/genética , Placenta/patología , Preeclampsia/genética , Preeclampsia/patología , Embarazo , Ratas , Ratas Sprague-DawleyRESUMEN
Subcutaneous adipose tissue (SAT) accumulation is a constitutional disorder resulting from metabolic syndrome. Although surgical and non-surgical methods for reducing SAT exist, patients remain non-compliant because of potential adverse effects and cost. In this study, we developed a new minimally-invasive approach to achieve SAT reduction, using a microneedle (MN) patch prepared from gelatin, which is capable of regulating fat metabolism. Four gelatin types were used: three derived from fish (SA-FG, GT-FG 220, and GT-FG 250), and one from swine (SM-PG 280). We applied gelatin-based MN patches five times over 4 weeks to rats with high-fat diet (HD)-induced obesity, and determined the resulting amount of SAT. We also investigated the histological features and determined the expression levels of fat metabolism-associated genes in SAT using hematoxylin and eosin staining and western blotting, respectively. SAT decreased following treatment with all four gelatin MN patches. Smaller adipocytes were observed in the regions treated with SA-FG, GT-FG 250, and SM-PG 280 MNs, demonstrating a decline in fat accumulation. The expression levels of fat metabolism-associated genes in the MN-treated SAT revealed that GT-FG 220 regulates fatty acid synthase (FASN) protein levels. These findings suggest that gelatin MN patches aid in decreasing the quantity of unwanted SAT by altering lipid metabolism and fat deposition.
RESUMEN
To understand prokaryotic responses during a spring bloom in offshore shelf waters, prokaryotic parameters were measured daily at a station located in the middle of the East China Sea over a six-week period from March 25 to May 19. The site experienced a phytoplankton bloom in late April, triggering changes in prokaryotic abundance and production after a lag of approximately one week. Before the bloom, changes in prokaryotic composition were small. Both during the bloom and in the post-bloom period, successive changes among bacterial groups were apparent. A SAR11 group became more dominant during the bloom period, and diverse groups belonging to the Flavobacteriia occurred dominantly during both the bloom and post-bloom periods. However, bacterial community changes at the species level during the bloom and post-bloom periods occurred rapidly in a time scale of a few days. Especially, NS5, NS4 and Formosa bacteria belonging to Flavobacteriia and bacteria belonging to Halieaceae and Arenicellaceae families of Gammaproteobacteria showed a successive pattern with large short-term variation during the period. The changes in prokaryotic composition were found to be related to phytoplankton biomass and composition, as well as seawater temperature and variations in nutrients.
Asunto(s)
Flavobacteriaceae/crecimiento & desarrollo , Gammaproteobacteria/crecimiento & desarrollo , Fitoplancton/crecimiento & desarrollo , Agua de Mar/microbiología , Biomasa , China , Flavobacteriaceae/clasificación , Gammaproteobacteria/clasificación , Océanos y Mares , Estaciones del AñoRESUMEN
Estrogen and progesterone are the main pregnancy hormones produced by the placenta. It is well understood that estrogen stimulates angiogenesis in the uterus during the reproductive cycle. Although the estrogen and progesterone signaling pathways are assumed to be associated with placental vascularization and preeclampsia, expression of estrogen receptors (ESRs) and progesterone receptor (PGR) in the placenta have not been well studied. The present study examined the expression patterns of steroid hormone receptors in placentas. Human placenta samples were collected and divided into normal and preeclampsia groups. Results revealed that expression levels of ESR1 were reduced, whereas ESR2 and PGR were elevated in preeclamptic placentas. To generate an in vitro preeclampsia environment, human placentaderived BeWo cells were incubated under hypoxic conditions, or treated with catecholOmethyl transferase inhibitor (COMTin) or LNGnitroarginine methyl ester (LNAME). Expression levels of ESR1, ESR2 and PGR in hypoxic cells demonstrated similar regulation as those in placentas from women with preeclampsia. Although COMTin and LNAME did not significantly regulate the expression levels of the receptors, COMTin translocated ESR2 and PGR from the nucleus to the cytoplasm, indicating that these receptors were inactivated. These results suggested that ESRs and PGR are associated with symptoms of preeclampsia in the placenta. The expression of ESR1 was reduced in preeclamptic placenta and hypoxic BeWo cells. In addition, the activation of ESR2 and PGR was blocked in placenta cells subjected to COMTin treatment. The reduced ESR1 expression and inactivation of ESR2 and PGR proteins may affect the physiological complications of preeclampsia in the placenta.
Asunto(s)
Receptor alfa de Estrógeno/genética , Receptor beta de Estrógeno/genética , Regulación de la Expresión Génica , Placenta/patología , Preeclampsia/genética , Receptores de Progesterona/genética , Línea Celular , Receptor alfa de Estrógeno/análisis , Receptor beta de Estrógeno/análisis , Femenino , Humanos , Placenta/metabolismo , Preeclampsia/patología , Embarazo , Receptores de Progesterona/análisisRESUMEN
Due to growing interest in cosmetics and medical applications, therapeutic medications that reduce the amount of local subcutaneous adipose tissue have potential for obesity treatment. However, conventional methods such as surgical operation are restricted due to risk of complications. Here, we report a simple and effective method for local reduction of subcutaneous adipose tissue (AT) by using microneedle-assisted transdermal delivery of natural polymers. After in vitro screening tests, gelatin was selected as a therapeutic polymer to reduce accumulation of AT. An in vitro study showed that the level of released glycerol as an indicator of lipolysis was elevated in isolated adipocytes after gelatin treatment. In addition, gelatins suppressed expression levels of lipogenesis-associated genes. Following application of gelatin microneedle (GMN) patches to high-fat diet (HD)-induced obese rats, the amount of subcutaneous AT at the site of GMN application was significantly reduced, which was also confirmed by histological analysis and micro-computed tomography scanning. In addition, lipogenesis-associated genes were down-regulated in GMN-treated subcutaneous AT. These findings suggest that GMN patches induce lipolysis and simultaneously inhibit lipogenesis, thereby reducing deposition of subcutaneous AT. This platform using GMNs may provide a new strategy to treat excess subcutaneous AT with minimal complications. STATEMENT OF SIGNIFICANCE: (1) Significance This work reports a new approach for the local reduction of subcutaneous adipose tissue using a dissolving microneedle patch prepared using gelatin to enable suppression of lipogenesis and acceleration of lipolysis in adipocytes. The gelatin microneedle patch exhibited a significant reduction of local subcutaneous fat up to 60% compared to control groups without any change in total weight. (2) Scientific impact This is the first report demonstrating the direct anti-obesity effects of gelatin administrated in a transdermal route and the feasibility of natural polymer therapeutics for regional reduction of subcutaneous fat. We believe that our work will excite interdisciplinary readers of Acta Biomaterialia, those who are interested in the natural polymers, drug delivery, and obesity.
Asunto(s)
Adipocitos/metabolismo , Sistemas de Liberación de Medicamentos , Gelatina/administración & dosificación , Gelatina/farmacología , Lipogénesis/efectos de los fármacos , Lipólisis/efectos de los fármacos , Adipocitos/efectos de los fármacos , Administración Tópica , Animales , Diferenciación Celular/efectos de los fármacos , Dieta Alta en Grasa , Regulación de la Expresión Génica/efectos de los fármacos , Lipogénesis/genética , Lipólisis/genética , Masculino , Agujas , Obesidad/patología , Proyectos Piloto , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Grasa Subcutánea/patología , Sus scrofa , Microtomografía por Rayos XRESUMEN
Preeclampsia (PE) is a pregnancyspecific hypertensive syndrome that results in substantial maternal and fetal morbidity and mortality. The exact cause of PE has not been completely elucidate, although abnormal formation of the placenta has been considered. The placenta connects the developing fetus to the uterine wall, producing a large quantity of steroid hormones to maintain pregnancy. Although steroid hormones, particularly progesterone (P4) and estrogen (E2), in the serum of women with PE have been studied, steroidogenesis in the placenta has not well been established. The present study compared the concentrations of steroid hormones, including pregnenolone (PG), P4, dehydroepiandrosterone (DHEA), testosterone (T) and E2, in the serum and placenta of women with PE. PG, P4, DHEA and E2 concentrations tended to be decreased in PE serum and placentas, and the results were statistically significant for P4 and E2 in the serum. Quantification of genes associated with steroidogenesis in the placenta was performed, and the expression of the P4 and E2synthesizing enzymes testosterone 17ßdehydrogenase 3 and 3 ßhydroxysteroid dehydrogenase/δ5 4isomerase type 1 was reduced. Notably, aromatase, an enzyme required for the production of E2, was upregulated in the PE placenta, suggesting that steroidogenic enzymes may be dynamically regulated and may affect the symptoms of PE. In conclusion, the results of the present study suggested that the levels of steroid hormones, including P4 and E2, in the serum and placenta of women with PE are downregulated, which may be mediated by the regulation of steroidogenic enzyme expression in the PE placenta.
Asunto(s)
Hormonas/metabolismo , Placenta/metabolismo , Preeclampsia/metabolismo , Esteroides/metabolismo , Adulto , Biomarcadores , Femenino , Regulación Enzimológica de la Expresión Génica , Hormonas/sangre , Humanos , Preeclampsia/sangre , Preeclampsia/genética , Embarazo , Esteroides/sangreRESUMEN
Benthic diatoms isolated from tidal flats in the west coast of Korea were identified through both traditional morphological method and molecular phylogenetic method for methodological comparison. For the molecular phylogenetic analyses, we sequenced the 18S rRNA and the ribulose bisphosphate carboxylase large subunit coding gene, rbcL. Further, the comparative analysis allowed for the assessment of the suitability as a genetic marker for identification of closely related benthic diatom species and as potential barcode gene. Based on the traditional morphological identification system, the 61 isolated strains were classified into 52 previously known taxa from 13 genera. However, 17 strains could not be classified as known species by morphological analyses, suggesting a hidden diversity of benthic diatoms. The Blast search on NCBI's Genebank indicated that the reference sequences for most of the species were absent for the benthic diatoms. Of the two genetic markers, the rbcL genes were more divergent than the 18S rRNA genes. Furthermore, a long branch attraction artefact was found in the 18S rRNA phylogeny. These results suggest that the rbcL gene is a more appropriate genetic marker for identification and classification of benthic diatoms. Considering their high diversity and simple shapes, and thus the difficulty associated with morphological classification of benthic diatoms, a molecular approach could provide a relatively easy and reliable classification system. However, this study suggests that more effort should be made to construct a reliable database containing polyphasic taxonomic data for diatom classification.
Asunto(s)
Código de Barras del ADN Taxonómico , Diatomeas , Filogenia , ARN Ribosómico 18S/genética , Ribulosa-Bifosfato Carboxilasa/genética , Diatomeas/clasificación , Diatomeas/genética , Océanos y Mares , República de CoreaRESUMEN
Contraction of uterus tissue frequently occurs throughout the estrous cycle and is regulated by several endogenous factors, including estradiol, progesterone, luteinizing hormone, folliclestimulating hormone, oxytocin (OXT) and contractionassociated proteins (CAPs). Contraction activity of uterus tissue according to the estrous cycle is important, due to the fact that it is directly associated with balanced implantation and stable pregnancy. However, few studies have examined the mechanism of uterus contraction activity in a porcine model. In the current study, porcine uterus tissue was separated into the follicular and luteal phases by histological analysis. To investigate regulation of contractionassociated factors according to the estrous cycle, mRNA and protein expression levels of reproductive hormonal receptors, including estrogen receptors, progesterone receptor and luteinizing hormone/choriogonadotropin receptor in addition to CAPs including OXT, OXT receptor (OXTR), hydroxyprostaglandin dehydrogenase 15(NAD) and gap junction α1 protein, were examined in the porcine uterus according to the follicular and luteal phases. For the results, hormonal receptors and CAPs were dynamically regulated depending on the estrous cycle. In conclusion, genes associated with uterine contraction and its regulatory hormonal receptors in the porcine uterus were differently regulated in the follicular and luteal phases, suggesting that these genes are critically involved in the remodeling and contraction of uterine tissue and may be required to modulate the physiological status of the uterus.
Asunto(s)
Ciclo Estral/genética , Ciclo Estral/metabolismo , Expresión Génica , Receptores de Estrógenos/genética , Receptores de HL/genética , Receptores de Progesterona/genética , Útero/fisiología , Animales , Biomarcadores , Femenino , Biosíntesis de Proteínas , Receptores de Estrógenos/metabolismo , Receptores de HL/metabolismo , Receptores de Progesterona/metabolismo , Reproducción , Porcinos , Transcripción GenéticaRESUMEN
Vitamin D3 is a fat-soluble secosteroid responsible for enhancing intestinal absorption of calcium, iron, and other materials. Vitamin D3 deficiency, therefore, can cause health problems such as metabolic diseases, and bone disorder. Female sex hormones including estrogen and progesterone are biosynthesized mainly in the granulosa cells of ovary. In this study, we isolated granulosa cells from porcine ovary and cultured for the experiments. In order to examine the effect of vitamin D3 on the ovarian granulosa cells, the mRNA and protein levels of genes were analyzed by real-time PCR and Western blot assay. The production of estrogen from the granulosa cells was also measured by the ELISA assay. Genes associated with follicle growth were not significantly altered by vitamin D3. However, it increases expression of genes involved in the estrogen-biosynthesis. Further, estrogen concentrations in porcine granulosa cell-cultured media increased in response to vitamin D3. These results showed that vitamin D3 is a powerful regulator of sex steroid hormone production in porcine granulosa cells, suggesting that vitamin D deficiency may result in inappropriate sexual development of industrial animals and eventually economic loss.