Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small Methods ; : e2400207, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801030

RESUMEN

Although the nickel-molybdenum electrocatalyst exhibits excellent activity in the alkaline hydrogen evolution reaction (HER), its stability is poor mainly due to molybdenum leaching. This work reports that doping samarium into nickel-molybdenum electrocatalyst effectively suppresses molybdenum leaching by forming a stable phase consisting of Sm, Mo, and O elements. The resulting electrode displays no noticeable activity degradation during the long-term testing (> 850 h) under a current density of 500 mA cm-2 in 1 м KOH. This enhanced stability is ascribed to the formation of a robust phase within the HER potential windows in alkaline electrolytes, as evidenced by the Pourbaix diagram. Furthermore, the samarium-modified electrocatalyst exhibits increased activity, with the overpotential decreasing by ≈59 mV from 159 to 100 mV at 500 mA cm-2 compared to the unmodified counterpart. These remarkable properties stem from samarium doping, which not only facilitates the formation of a stable phase to inhibit molybdenum leaching but also adjusts the electronic properties of molybdenum to enhance water dissociation.

2.
J Phys Chem Lett ; 14(36): 8121-8128, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37668656

RESUMEN

Pt catalyst has been considered as the state-of-the-art catalyst for hydrogen evolution reaction (HER) under acid condition. However, its catalytic kinetics under alkaline conditions is not well-understood. Herein, we report a Ni-Pt(SAs) (SAs = single atoms) catalyst with Pt atomically dispersed in a Ni matrix, and it possesses an impressive HER performance with an overpotential as low as 210 mV at 500 mA cm-2 in strong alkaline electrolyte (7 M KOH), which is much higher than Pt nanoparticle-modified Ni catalyst (Ni-Pt(NPs)). Kinetics analysis reveals that Pt doping in the Ni matrix can accelerate the Volmer step on the Ni-Pt surface. Moreover, Ni-Pt(SAs) displays a more favorable kinetics for H2 formation reaction at high current density than Ni-Pt(NPs). Theoretical calculations reveal that atomically dispersed Pt weakens the adsorption of both H and OH on the surface of Ni-Pt electrode and promotes H2 formation from surface H on Ni-Pt(SAs).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA