Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3373-3384, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39041101

RESUMEN

This study aims to explore the mechanism of Dabugan Decoction in the treatment of generalized anxiety disorder(GAD) based on network pharmacology, molecular docking, and animal experiments. Network pharmacology and molecular docking technology were used to obtain the possible targets and related signaling pathways of Dabugan Decoction in the treatment of GAD. The GAD rat model was established, and the corresponding drugs were given by gavage after randomization. After 28 days of continuous intervention, the anxiety state of rats was detected, and the pathological changes of the hippocampus were detected in each group. ELISA and Western blot were used to detect the protein expression levels of related molecules. A total of 65 drug compounds in Dabugan Decoction were obtained, involving 403 targets of action, 7 398 disease targets of GAD, and 279 common targets of "drug-disease". The key nodes in the protein-protein interaction(PPI) network were Akt1, TNF, IL-6, TP53, IL-1ß, etc. Function analysis of Gene Ontology(GO) and enrichment analysis of Kyoto Encyclopedia of Genes and Genomes(KEGG) showed that the PI3K-Akt signaling pathway was the most important pathway. The results of molecular docking showed that the core components of the drug had good binding activity with the corresponding key targets. Animal experiments showed that Dabugan Decoction could effectively improve the anxiety behavior of rats and increase the open arm end movement distance and total distance of rats in the elevated cross labyrinth, the number and stay time of entering the open box, and the time(%) and the number of entering the center of the open field. At the same time, HE staining and Nicil staining showed that the number of hippocampal nerve cells in rats increased, and they were closely arranged. The damage to the cell body was improved, and there was an increase in Nissl substances in the cells. The expression of TNF-α, IL-6, and IL-1ß in rat hippocampus decreased, and the expression of TP53, p-Akt1, and p-PI3K increased. The mechanism may be related to the activation of the PI3K-Akt signaling pathway and the inhibition of inflammatory response. Dabugan Decoction can play a good therapeutic and regulatory role in GAD, reflecting the overall effect of traditional Chinese medicine(TCM) compound and the characteristics of multiple targets and multiple pathways. At the same time, it is preliminarily discussed that the state of GAD may be improved by Dabugan Decoction via-activating PI3K-Akt signaling pathway and inhibiting inflammatory response and anti-apoptosis, thus providing experimental data support for the clinical application of Dabugan Decoction.


Asunto(s)
Trastornos de Ansiedad , Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Farmacología en Red , Proteínas Proto-Oncogénicas c-akt , Animales , Ratas , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Masculino , Trastornos de Ansiedad/tratamiento farmacológico , Trastornos de Ansiedad/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Interleucina-6/genética , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Mapas de Interacción de Proteínas , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Humanos
2.
Cell Biol Int ; 48(6): 848-860, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38444077

RESUMEN

Oxidized low-density lipoprotein (oxLDL), a key component in atherosclerosis and hyperlipidemia, is a risk factor for atherothrombosis in dyslipidemia, yet its mechanism is poorly understood. In this study, we used oxLDL-induced human aortic endothelial cells (HAECs) and high-fat diet (HFD)-fed mice as a hyperlipidemia model. Phosphatidylserine (PS) exposure, cytosolic Ca2+, reactive oxygen species (ROS), and lipid peroxidation were measured by flow cytometer. TMEM16F expression was detected by immunofluorescence, western blot, and reverse transcription polymerase chain reaction. Procoagulant activity (PCA) was measured by coagulation time, intrinsic/extrinsic factor Xase, and thrombin generation. We found that oxLDL-induced PS exposure and the corresponding PCA of HAECs were increased significantly compared with control, which could be inhibited over 90% by lactadherin. Importantly, TMEM16F expression in oxLDL-induced HAECs was upregulated by enhanced intracellular Ca2+ concentration, ROS, and lipid peroxidation, which led to PS exposure. Meanwhile, the knockdown of TMEM16F by short hairpin RNA significantly inhibited PS exposure in oxLDL-induced HAECs. Moreover, we observed that HFD-fed mice dramatically increased the progress of thrombus formation and accompanied upregulated TMEM16F expression by thromboelastography analysis, FeCl3-induced carotid artery thrombosis model, and western blot. Collectively, these results demonstrate that TMEM16F-mediated PS exposure may contribute to prothrombotic status under hyperlipidemic conditions, which may serve as a novel therapeutic target for the prevention of thrombosis in hyperlipidemia.


Asunto(s)
Anoctaminas , Células Endoteliales , Lipoproteínas LDL , Fosfatidilserinas , Especies Reactivas de Oxígeno , Lipoproteínas LDL/farmacología , Lipoproteínas LDL/metabolismo , Animales , Humanos , Fosfatidilserinas/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Ratones , Anoctaminas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos C57BL , Masculino , Hiperlipidemias/metabolismo , Calcio/metabolismo , Dieta Alta en Grasa , Trombosis/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Células Cultivadas , Coagulación Sanguínea/efectos de los fármacos
3.
Artículo en Inglés | MEDLINE | ID: mdl-38062756

RESUMEN

Aims: Scavenger receptor class B type I (SRBI) promotes cell cholesterol efflux and the clearance of plasma cholesterol. Thus, SRBI deficiency causes abnormal cholesterol metabolism and hyperlipidemia. Studies have suggested that ferroptosis is involved in lipotoxicity; however, whether SRBI deficiency could induce ferroptosis remains to be investigated. Results: We knocked down or knocked out SRBI in renal HK-2 cells and C57BL/6 mice to determine the expression levels of ferroptosis-related regulators. Our results demonstrated that SRBI deficiency upregulates transferrin receptor 1 (TFR1) expression and downregulates ferroportin expression, which induces iron overload and subsequent ferroptosis in renal tubular epithelial cells. TFR1 is known to be regulated by hypoxia-inducible factor-1α (HIF-1α). Next, we investigated whether SRBI deletion affected HIF-1α. SRBI deletion upregulated the mRNA and protein expression of HIF-1α, and promoted its translocation to the nucleus. To determine whether HIF-1α plays a key role in SRBI-deficiency-induced ferroptosis, we used HIF-1α inhibitor and siHIF-1α in HK-2 cells, and found that downregulation of HIF-1α prevented SRBI-silencing-induced TFR1 upregulation and iron overload, and eventually reduced ferroptosis. The underlying mechanism of HIF-1α activation was explored next, and the results showed that SRBI knockout or knockdown may upregulate the expression of HIF-1α, and promote HIF-1α translocation from the cytoplasm into the nucleus via the PKC-ß/NF-κB signaling pathway. Innovation and Conclusion: Our study showed, for the first time, that SRBI deficiency induces iron overload and subsequent ferroptosis via the HIF-1α/TFR1 pathway.

4.
Small ; 20(11): e2308875, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37880900

RESUMEN

As a new approach to "More than Moore", integrated ionic circuits serve as a possible alternative to traditional electronic circuits, yet the integrated ionic circuit composed of functional ionic elements and ionic connections is still challenging. Herein, a stretchable and transparent ionic display module of the integrated ionic circuit has been successfully prepared and demonstrated by pixelating a proton-responsive hydrogel. It is programmed to excite the hydrogel color change by a Faraday process occurring at the electrode at the specific pixel points, which enables the display of digital information and even color information. Importantly, the display module exhibits stable performance under strong magnetic field conditions (1.7 T). The transparent and stretchable nature of such ionic modules also allows them to be utilized in a broad range of scenarios, which paves the way for integrated ionic circuits.

5.
Adv Sci (Weinh) ; 10(32): e2301977, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37824217

RESUMEN

Gastric cancer stem cells (GCSCs) are self-renewing tumor cells that govern chemoresistance in gastric adenocarcinoma (GAC), whereas their regulatory mechanisms remain elusive. Here, the study aims to elucidate the role of ATOH1 in the maintenance of GCSCs. The preclinical model and GAC sample analysis indicate that ATOH1 deficiency is correlated with poor GAC prognosis and chemoresistance. ScRNA-seq reveals that ATOH1 is downregulated in the pit cells of GAC compared with those in paracarcinoma samples. Lineage tracing reveals that Atoh1 deletion strongly confers pit cell stemness. ATOH1 depletion significantly accelerates cancer stemness and chemoresistance in Tff1-CreERT2; Rosa26Tdtomato and Tff1-CreERT2; Apcfl/fl ; p53fl/fl (TcPP) mouse models and organoids. ATOH1 deficiency downregulates growth arrest-specific protein 1 (GAS1) by suppressing GAS1 promoter transcription. GAS1 forms a complex with RET, which inhibits Tyr1062 phosphorylation, and consequently activates the RET/AKT/mTOR signaling pathway by ATOH1 deficiency. Combining chemotherapy with drugs targeting AKT/mTOR signaling can overcome ATOH1 deficiency-induced chemoresistance. Moreover, it is confirmed that abnormal DNA hypermethylation induces ATOH1 deficiency. Taken together, the results demonstrate that ATOH1 loss promotes cancer stemness through the ATOH1/GAS1/RET/AKT/mTOR signaling pathway in GAC, thus providing a potential therapeutic strategy for AKT/mTOR inhibitors in GAC patients with ATOH1 deficiency.


Asunto(s)
Adenocarcinoma , Proteína Fluorescente Roja , Neoplasias Gástricas , Animales , Humanos , Ratones , Adenocarcinoma/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Neoplasias Gástricas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
6.
Anal Sci ; 39(12): 1947-1956, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37589879

RESUMEN

Accurate identification of deer-derived components is significant in food and drug authenticity. Over the years, several methods have been developed to authenticate these products; however, identifying whether female deer products are hybrids is challenging. In this study, the zinc finger protein X-linked (ZFX) gene sequences of sika deer (Cervus nippon), red deer (Cervus elaphus) and their hybrid offspring were amplified and sequenced, the X221 and X428 species-specific single nucleotide polymorphisms (SNP) loci were verified, and a tetra-primer amplification refractory mutation system (T-ARMS-PCR) assay was developed to identify the parent-of-origin of female sika deer, red deer, and their hybrid deer. The T-ARMS-PCR developed based on the X221 locus could identify sika deer, red deer, and their hybrid offspring according to the presence or absence of PCR product sizes of 486 bp, 352 bp, and 179 bp, respectively, just as X428 locus could identify sika deer, red deer, and their hybrid offspring according to the presence or absence of PCR product sizes of 549 bp, 213 bp, and 383 bp, respectively. Forty products labeled deer-derived ingredients randomly purchased were tested using this assay, and the results showed that the identification results based on the two SNP loci were utterly consistent with the actual sources. In addition, this method was found to be accurate, simple, convenient, and with high specificity, thus providing an essential technical reference for deer product species identification. It is also an important supplement to the identification methods of the original ingredients of existing deer products.


Asunto(s)
Ciervos , Animales , Femenino , Ciervos/genética , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple
7.
Thromb Haemost ; 123(12): 1116-1128, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37364609

RESUMEN

BACKGROUND: Although thrombosis events are the leading complication of uremia, their mechanism is largely unknown. The interaction between endothelial cells (ECs) and red blood cells (RBCs) in uremic solutes and its prothrombotic role need to be investigated. METHODS AND RESULTS: Here, we established an in vitro co-incubation model of uremic RBC and EC as well as a uremic rat model induced by adenine. Using flow cytometry, confocal microscopy, and electron microscopy, we found increased erythrophagocytosis by EC accompanied by increased reactive oxygen species, lipid peroxidation, and impairment of mitochondria, indicating that ECs undergo ferroptosis. Further investigations showed increased proteins' expression of heme oxygenase-1 and ferritin and labile iron pool accumulation in EC, which could be suppressed by deferoxamine (DFO). The ferroptosis-negative regulators glutathione peroxidase 4 and SLC7A11 were decreased in our erythrophagocytosis model and could be enhanced by ferrostatin-1 or DFO. In vivo, we observed that vascular EC phagocytosed RBC and underwent ferroptosis in the kidney of the uremic rat, which could be inhibited by blocking the phagocytic pathway or inhibiting ferroptosis. Next, we found that the high tendency of thrombus formation was accompanied by erythrophagocytosis-induced ferroptosis in vitro and in vivo. Importantly, we further revealed that upregulated TMEM16F expression mediated phosphatidylserine externalization on ferroptotic EC, which contributed to a uremia-associated hypercoagulable state. CONCLUSION: Our results indicate that erythrophagocytosis-triggered ferroptosis followed by phosphatidylserine exposure of EC may play a key role in uremic thrombotic complications, which may be a promising target to prevent thrombogenesis of uremia.


Asunto(s)
Ferroptosis , Trombosis , Uremia , Ratas , Animales , Células Endoteliales/metabolismo , Fosfatidilserinas/metabolismo , Eritrocitos , Uremia/metabolismo
8.
Adv Mater ; 35(36): e2303805, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37226690

RESUMEN

Natural earthworm with the ability to loosen soils that favors sustainable agriculture has inspired worldwide interest in the design of intelligent actuators. Given the inability to carry heavy loads and uncontrolled deformation, the vast majority of actuators can only perform simple tasks by bending, contraction, or elongation. Herein, a degradable actuator with the ability to deform in desired ways is presented, which successfully mimics the burrowing activities of earthworms to loosen soils with increased soil porosity by digging, grabbing, and lifting the soil when it receives rains. Such a scarifying actuator is made of degradable cellulose acetate and uncrosslinked polyacrylamide via the swelling-photopolymerizing method. The water absorption of polyacrylamide in moisture conditions causes rapid and remarkable bending. Such mechanical bending can be controlled in specific areas of the cellulose acetate film if polyacrylamide is polymerized in a patterned way, so as to generate complicated deformations of the whole cellulose acetate. Patterning polyacrylamide within cellulose acetate is achieved based on reversible surface protection by means of pen writing, rather than the traditional masking techniques. The water-induced deformation of programmable cellulose-based actuators is well preserved in soil, which is appropriate for promoting rain diffusion as well as root breath.


Asunto(s)
Oligoquetos , Animales , Agua , Polimerizacion , Suelo
9.
ACS Appl Mater Interfaces ; 15(19): 23749-23757, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37143329

RESUMEN

Motion tracking and recognition are gaining increasing attention in athletes' training for winter sports due to their importance in posture correction and injury prevention. Electronic skin serves as a better candidate compared to vision-based methods. However, the challenges of its application include sensing materials with good stretchability, softness, anti-freeze, non-volatility, and adhesion, and data processing techniques of high intelligence and efficiency. Here, we propose an antifreezing, adhesive, and ultra-stretchable organic ionogel (OIG). Maximum elongation of over 6500% has been obtained for the OIG of the double network, and the mechanical stretchability is retained at temperatures ranging from -50 to 50 °C. Importantly, the multi-sensor system could realize motion "recognition" rather than "perception" with the help of a convolutional neural network.


Asunto(s)
Deportes , Dispositivos Electrónicos Vestibles , Humanos , Adhesivos , Movimiento (Física) , Redes Neurales de la Computación
10.
Blood Cells Mol Dis ; 96: 102666, 2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35567997

RESUMEN

The link between hyperuricemia (HUA) and the risk of venous thromboembolism (VTE) has been well established. However, the mechanisms of thrombus generation and the effect of HUA on procoagulant activity (PCA) of erythrocytes remain unclear no matter in uremia or hyperuricemia. Here, phosphatidylserine (PS) exposure, microparticles (MPs) release, cytosolic Ca2+, TMEM16F expression, reactive oxygen species (ROS) and lipid peroxidation of erythrocyte were detected by flow cytometer. PCA was assessed by coagulation time, purified coagulation complex and fibrin production assays. The fibrin formation was observed by scanning electron microscopy (SEM). We found that PS exposure, MPs generation, TMEM16F expression and consequent PCA of erythrocyte in HUA patients significantly increased compared to those in healthy volunteers. Furthermore, high UA induced PS exposure, and MPs release of erythrocyte in concentration and time-dependent manners in vitro, which enhanced the PCA of erythrocyte and was inhibited by lactadherin, a PS inhibitor. Additionally, using SEM, we also observed compact fibrin clots with highly-branched networks and thin fibers supported by red blood cells (RBCs) and RBC-derived MPs (RMPs). Importantly, we demonstrated UA enhanced the production of ROS and lipid peroxidation and reduced the generation of glutathione (GSH) of erythrocyte, which enhanced TMEM16F activity and followed PS externalization and RMPs formation. Collectively, these results suggest that Ca2+-dependent TMEM16F activation may be responsible for UA-induced PS exposure and MPs release of RBC, which thereby contribute to the prothrombotic risk in HUA.

11.
FASEB J ; 35(9): e21808, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34390515

RESUMEN

The link between serum uric acid (SUA) and the risk of venous thromboembolism (VTE) is well established. Recent data suggested a causative role of UA in endothelial cells (ECs) dysfunction. However, the molecular mechanism of high UA on thrombogenesis is unknown. We investigate whether high UA induce phosphatidylserine (PS) externalization and microparticle (MP) shedding in cultured EC, and contribute to UA-induced hypercoagulable state. In the present study, we demonstrate that UA induces PS exposure and EMP release of EC in a concentration- and time-dependent manner, which enhances the procoagulant activity (PCA) of EC and inhibited over 90% by lactadherin in vitro. Furthermore, hyperuricemic rat model was used to evaluate the development of thrombi following by flow stasis in the inferior vena cava (IVC). Hyperuricemia group is more likely to form large and hard thrombi compared with control. Importantly, we found that TMEM16F expression is significantly upregulated in UA-treated EC, which is crucial for UA-induced PS exposure and MP formation. Additionally, UA increases the generation of reactive oxygen species (ROS), lipid peroxidation, and cytosolic Ca2+ concentration in EC, which might contribute to increased TMEM16F expression. Using confocal microscopy, we also observed disruption of the actin cytoskeleton, suggesting that depolymerization of actin filaments might be required for TMEM16F activation and followed by PS exposure and membrane blebbing in UA-treated EC. Our results demonstrate a thrombotic role of EC in hyperuricemia through TMEM16F-mediated PS exposure and MPs release.


Asunto(s)
Anoctaminas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Células Endoteliales/metabolismo , Hiperuricemia/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hiperuricemia/sangre , Peroxidación de Lípido/fisiología , Masculino , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Ácido Úrico/sangre
12.
Cancer Lett ; 521: 210-223, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34428517

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancers worldwide and lacks effective treatment. Herein, we found that the antifungal Natamycin (NAT) exhibits antitumor activity by inducing apoptosis both in vitro and in vivo. Mechanistically, NAT downregulates the expression of Peroxiredoxin 1 (PRDX1) by promoting ubiquitination-mediated degradation, thereby leading to increased reactive oxygen species (ROS) accumulation and subsequent apoptosis. Exogenous overexpression of PRDX1 or N-acetyl-l-cysteine (NAC) pretreatment abrogates NAT-induced cytotoxicity in PLC/PRF/5 and Huh7 cells, suggesting the vital role of ROS in the antitumor properties of NAT. Of note, downregulation of PRDX1 decreases the phosphorylation of AKT, thereby inducing cytoprotective autophagy and combinational use of NAT and chloroquine (CQ) achieves better anti-tumor efficacy. Moreover, NAT acts synergistically with sorafenib (SOR) in HCC suppression. Collectively, our study provides an important molecular basis for NAT-induced cell death and suggests that the antifungal NAT holds the potential to be repurposed as an anticancer drug for HCC treatment.

13.
Front Genet ; 12: 607085, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025712

RESUMEN

AIM: To explore the clinical imaging, laboratory and genetic characteristics of a newborn boy with isolated sulfite oxidase deficiency (ISOD) in a Chinese mainland cohort. METHODS: Homocysteine and uric acid in plasma and cysteine and total homocysteine in the blood spot were assessed in a Chinese newborn patient with progressive encephalopathy, tonic seizures, abnormal muscle tone, and feeding difficulties. Whole exome sequencing and Sanger sequencing facilitated an accurate diagnosis. The pathogenicity predictions and conservation analysis of the identified mutations were conducted by bioinformatics tools. RESULTS: Low total homocysteine was detected in the blood spot, while homocysteine and uric acid levels were normal in the plasma. S-sulfocysteine was abnormally elevated in urine. A follow-up examination revealed several progressive neuropathological findings. Also, intermittent convulsions and axial dystonia were observed. However, the coordination of sucking and swallowing was slightly improved. A novel paternal nonsense variant c.475G > T (p.Glu159∗) and a novel maternal missense variant c.1201A > G (p.Lys401Glu) in SUOX were identified in this case by co-segregation verification. CONCLUSION: This is the second report of early-onset ISOD case in a non-consanguineous Chinese mainland family. Combined with the clinical characteristics and biochemical indexes, we speculated that these two novel pathogenic variants of the SUOX gene underlie the cause of the disease in this patient. Next-generation sequencing (NGS) and Sanger sequencing provided reliable basis for clinical and prenatal diagnoses of this family, it also enriched the mutation spectrum of the SUOX gene.

14.
J Phys Chem B ; 125(14): 3690-3699, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33797251

RESUMEN

Defect engineering leads to an effective manipulation of the physical and chemical properties of metal-organic frameworks (MOFs). Taking the common missing linker defect as an example, the defective MOF generally possesses larger pores and a greater surface area/volume ratio, both of which favor an increased amount of adsorption. When it comes to the self-diffusion of adsorbates in MOFs, however, the missing linker is a double-edged sword: the unsaturated metal sites, due to missing linkers, could interact more strongly with adsorbates and result in a slower self-diffusion. Therefore, it is of fundamental importance to evaluate the two competing factors and reveal which one is dominating, a faster self-diffusion due to larger volume or a slower self-diffusion owing to strong interactions at unsaturated sites. In this work, via Monte Carlo and molecular dynamics simulations, we investigate the behavior of isopropyl alcohol (IPA) in the Zr-based UiO-66 MOFs, with a specific focus on the missing linker effects. The results reveal that unsaturated Zr sites bind strongly with IPA molecules, which in return would significantly reduce the self-diffusion coefficient of IPA. Besides this, for the same level of missing linkers, the location of defective sites also makes a difference. We expect such a theoretical study will provide an in-depth understanding of self-diffusion under confinement, inspire better defect engineering strategics, and promote MOF based materials toward challenging real-life applications.

15.
J Phys Chem Lett ; 12(2): 892-899, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33434023

RESUMEN

Thermodynamic and kinetic properties of molecular adsorption and transport in metal-organic frameworks (MOFs) are crucially important for many applications, including gas adsorption, filtration, and remediation of harmful chemicals. Using the in situ 1H nuclear magnetic resonance (NMR) isotherm technique, we measured macroscopic thermodynamic and kinetic properties such as isotherms and rates of mass transfer while simultaneously obtaining microscopic information revealed by adsorbed molecules via NMR. Upon investigating isopropyl alcohol adsorption in MOF UiO-66 by in situ NMR, we obtained separate isotherms for molecules adsorbed at distinct environments exhibiting distinct NMR characteristics. A mechanistic view of the adsorption process is obtained by correlating such resolved isotherms with the cage structure effect on the nucleus-independent chemical shift, molecular dynamics such as the crowding effect at high loading levels, and the loading level dependence of the mass transfer rate as measured by NMR and elucidated by classical Monte Carlo simulations.

16.
Int J Immunopathol Pharmacol ; 34: 2058738420963818, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33016797

RESUMEN

Sepsis, a severe infectious disease in the neonatal period, is considered a risk factor for necrotizing enterocolitis (NEC). To investigate the specific risk factors for NEC in septic infants, septic infants admitted to our center from January 2010 to April 2018 were included. Septic neonates with proven NEC (Bell's stage ⩾II) were enrolled in the NEC group, and those without NEC were enrolled in the control group. Demographics, clinical characteristics, and risk factors were compared between the two groups. Univariate and logistic regression analyses were used to evaluate the potential risk factors for NEC. A total of 610 septic neonates were included, of whom 78 (12.8%) had complicated NEC. The univariate analysis indicated that infants with NEC had a lower birth weight, a lower gestational age, and older age on admission than those without NEC (P < 0.05). Higher rates of anemia, prolonged rupture of membranes (PROM) (⩾18 h), pregnancy-induced hypertension, late-onset sepsis (LOS), red blood cell transfusion and hypoalbuminemia were observed in the NEC group than in the non-NEC group (P<0.05). Logistic regression analysis revealed LOS (P = 0.000), red blood cell transfusion (P = 0.001) and hypoalbuminemia (P = 0.001) were associated with the development of NEC. Among NEC infants, those who needed red blood cell transfusion had a longer hospitalization duration than those who did not need transfusion (P < 0.05). LOS, red blood cell transfusion and hypoalbuminemia were independent risk factors for the development of NEC in infants with sepsis. Taking measures to reduce the occurrence of hypoproteinemia and severe anemia may help to reduce the occurrence of NEC in septic neonates.


Asunto(s)
Enterocolitis Necrotizante/etiología , Sepsis Neonatal/complicaciones , Factores de Edad , Peso al Nacer , Enterocolitis Necrotizante/diagnóstico , Transfusión de Eritrocitos/efectos adversos , Edad Gestacional , Humanos , Recién Nacido de Bajo Peso , Recién Nacido , Recien Nacido Prematuro , Sepsis Neonatal/diagnóstico , Sepsis Neonatal/terapia , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo
17.
BMC Pediatr ; 19(1): 185, 2019 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-31176363

RESUMEN

BACKGROUND: Probiotic therapy can reduce the incidence of NEC. Therapeutic use of probiotics after NEC diagnosis reduces the severity of NEC in preterm infants or full-term infants is unclear. To evaluate the effect of probiotics on preventing the deterioration of necrotizing enterocolitis (NEC) from stage I to II/III. METHODS: A retrospective matched cohort study was performed. Included patients were ultimately divided into two groups: the probiotic treatment group (probiotics were used ≥4 days) and the no probiotic treatment group. The differences in deterioration trends between the two groups were compared. Additionally, the risk factors associated with the deterioration of NEC were further analyzed with a case-control study. RESULTS: A total of 231 infants met the inclusion criteria. Eighty-one pairs were matched according to similar gestational age and birth weight. Before matching, we found that the rate of deterioration of NEC from stage I to II/III in the group with probiotic treatment was similar to that in the group without probiotic treatment (23.1% [25/108] vs 26.0% [32/123], P = 0.614). After matching, the rate of deterioration of NEC between the two groups still had no significant difference (21.0% [17/81] vs 27.2% [22/81], P = 0.358). Logistic regression analysis showed that sepsis after NEC was an independent risk factor for NEC deteriorating from stage I to II/III (OR 2.378, 95% CI 1.005-5.628, P = 0.049). CONCLUSION: Probiotics may not prevent the deterioration of NEC from stage I to II/III in infants, but this conclusion should be treated with caution.


Asunto(s)
Progresión de la Enfermedad , Enterocolitis Necrotizante/terapia , Probióticos/uso terapéutico , Peso al Nacer , Estudios de Casos y Controles , Enterocolitis Necrotizante/complicaciones , Enterocolitis Necrotizante/patología , Femenino , Edad Gestacional , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro , Modelos Logísticos , Masculino , Análisis por Apareamiento , Estudios Retrospectivos , Factores de Riesgo , Sepsis/complicaciones
18.
Cell Death Discov ; 5: 88, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30993014

RESUMEN

Inflammation mediated by myeloid cells trigger receptors 1 (TREM-1) is important for atherosclerosis development, while sirtuin 6 (Sirt6) levels decrease in atheroscleoritc plaque. Here we demonstrate that oxidatively modified low density lipoprotein (ox-LDL)-treated endothelial cells (ECs) exhibited increased TREM-1-mediated pyroptosis and decreased Sirt6-induced autophagy. We show that high sTREM-1 and low sSirt6 levels were independent predictors of boosted endothelial microparticles (EMPs) on admission, and were associated with increased risk for all-cause mortality and major adverse cardiovascular events (MACE) at median 24 months (interquartile range, 18-26) follow-up in acute myocardial infarction (AMI) patients. Additionally, blockage of Sirt6-induced autophagy led to augmented TREM-1-mediated pyroptosis, whereas Sirt6 overexpression attenuated ECs inflammation and pyroptosis following ox-LDL treatment. Our findings indicate that TREM-1 and in a reversed trend Sirt6 appeared to be markers of endothelial inflammation with potential for use in risk stratification.

19.
Expert Rev Proteomics ; 16(5): 413-429, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30925852

RESUMEN

INTRODUCTION: Resistance to chemotherapy and development of specific and effective molecular targeted therapies are major obstacles facing current cancer treatment. Comparative proteomic approaches have been employed for the discovery of putative biomarkers associated with cancer drug resistance and have yielded a number of candidate proteins, showing great promise for both novel drug target identification and personalized medicine for the treatment of drug-resistant cancer. Areas covered: Herein, we review the recent advances and challenges in proteomics studies on cancer drug resistance with an emphasis on biomarker discovery, as well as understanding the interconnectivity of proteins in disease-related signaling pathways. In addition, we highlight the critical role that post-translational modifications (PTMs) play in the mechanisms of cancer drug resistance. Expert opinion: Revealing changes in proteome profiles and the role of PTMs in drug-resistant cancer is key to deciphering the mechanisms of treatment resistance. With the development of sensitive and specific mass spectrometry (MS)-based proteomics and related technologies, it is now possible to investigate in depth potential biomarkers and the molecular mechanisms of cancer drug resistance, assisting the development of individualized therapeutic strategies for cancer patients.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Proteómica , Animales , Biomarcadores de Tumor/metabolismo , Humanos , Espectrometría de Masas , Procesamiento Proteico-Postraduccional
20.
Environ Toxicol ; 34(2): 103-111, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30375170

RESUMEN

Intake of arsenic (As) via drinking water has been a serious threat to global public health. Though there are numerous reports of As neurotoxicity, its pathogenesis mechanisms remain vague especially its chronic effects on metabolic network. Hippocampus is a renowned area in relation to learning and memory, whilst recently, cerebellum is argued to be involved with process of cognition. Therefore, the study aimed to explore metabolomics alternations in these two areas after chronic As exposure, with the purpose of further illustrating details of As neurotoxicity. Twelve 3-week-old male C57BL/6J mice were divided into two groups, receiving deionized drinking water (control group) or 50 mg/L of sodium arsenite (via drinking water) for 24 weeks. Learning and memory abilities were tested by Morris water maze (MWM) test. Pathological and morphological changes of hippocampus and cerebellum were captured via transmission electron microscopy (TEM). Metabolic alterations were analyzed by gas chromatography-mass spectrometry (GC-MS). MWM test confirmed impairments of learning and memory abilities of mice after chronic As exposure. Metabolomics identifications indicated that tyrosine increased and aspartic acid (Asp) decreased simultaneously in both hippocampus and cerebellum. Intermediates (succinic acid) and indirect involved components of tricarboxylic acid cycle (proline, cysteine, and alanine) were found declined in cerebellum, indicating disordered energy metabolism. Our findings suggest that these metabolite alterations are related to As-induced disorders of amino acids and energy metabolism, which might therefore, play an important part in mechanisms of As neurotoxicity.


Asunto(s)
Arsénico/toxicidad , Cerebelo/efectos de los fármacos , Hipocampo/efectos de los fármacos , Redes y Vías Metabólicas/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Arsénico/metabolismo , Cerebelo/metabolismo , Cerebelo/ultraestructura , Cromatografía de Gases y Espectrometría de Masas , Hipocampo/metabolismo , Hipocampo/ultraestructura , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Metabolómica/métodos , Ratones , Ratones Endogámicos C57BL , Síndromes de Neurotoxicidad/metabolismo , Síndromes de Neurotoxicidad/patología , Ratas , Contaminantes Químicos del Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA