Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2307525121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38557189

RESUMEN

Changes in climate can alter environmental conditions faster than most species can adapt. A prediction under a warming climate is that species will shift their distributions poleward through time. While many studies focus on range shifts, latitudinal shifts in species' optima can occur without detectable changes in their range. We quantified shifts in latitudinal optima for 209 North American bird species over the last 55 y. The latitudinal optimum (m) for each species in each year was estimated using a bespoke flexible non-linear zero-inflated model of abundance vs. latitude, and the annual shift in m through time was quantified. One-third (70) of the bird species showed a significant shift in their optimum. Overall, mean peak abundances of North American birds have shifted northward, on average, at a rate of 1.5 km per year (±0.58 SE), corresponding to a total distance moved of 82.5 km (±31.9 SE) over the last 55 y. Stronger poleward shifts at the continental scale were linked to key species' traits, including thermal optimum, habitat specialization, and territoriality. Shifts in the western region were larger and less variable than in the eastern region, and they were linked to species' thermal optimum, habitat density preference, and habitat specialization. Individual species' latitudinal shifts were most strongly linked to their estimated thermal optimum, clearly indicating a climate-driven response. Displacement of species from their historically optimal realized niches can have dramatic ecological consequences. Effective conservation must consider within-range abundance shifts. Areas currently deemed "optimal" are unlikely to remain so.


Asunto(s)
Cambio Climático , Clima , Animales , Aves/fisiología , Ecosistema , América del Norte
2.
Biol Rev Camb Philos Soc ; 98(4): 1388-1423, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37072381

RESUMEN

Biotic homogenisation is defined as decreasing dissimilarity among ecological assemblages sampled within a given spatial area over time. Biotic differentiation, in turn, is defined as increasing dissimilarity over time. Overall, changes in the spatial dissimilarities among assemblages (termed 'beta diversity') is an increasingly recognised feature of broader biodiversity change in the Anthropocene. Empirical evidence of biotic homogenisation and biotic differentiation remains scattered across different ecosystems. Most meta-analyses quantify the prevalence and direction of change in beta diversity, rather than attempting to identify underlying ecological drivers of such changes. By conceptualising the mechanisms that contribute to decreasing or increasing dissimilarity in the composition of ecological assemblages across space, environmental managers and conservation practitioners can make informed decisions about what interventions may be required to sustain biodiversity and can predict potential biodiversity outcomes of future disturbances. We systematically reviewed and synthesised published empirical evidence for ecological drivers of biotic homogenisation and differentiation across terrestrial, marine, and freshwater realms to derive conceptual models that explain changes in spatial beta diversity. We pursued five key themes in our review: (i) temporal environmental change; (ii) disturbance regime; (iii) connectivity alteration and species redistribution; (iv) habitat change; and (v) biotic and trophic interactions. Our first conceptual model highlights how biotic homogenisation and differentiation can occur as a function of changes in local (alpha) diversity or regional (gamma) diversity, independently of species invasions and losses due to changes in species occurrence among assemblages. Second, the direction and magnitude of change in beta diversity depends on the interaction between spatial variation (patchiness) and temporal variation (synchronicity) of disturbance events. Third, in the context of connectivity and species redistribution, divergent beta diversity outcomes occur as different species have different dispersal characteristics, and the magnitude of beta diversity change associated with species invasions also depends strongly on alpha and gamma diversity prior to species invasion. Fourth, beta diversity is positively linked with spatial environmental variability, such that biotic homogenisation and differentiation occur when environmental heterogeneity decreases or increases, respectively. Fifth, species interactions can influence beta diversity via habitat modification, disease, consumption (trophic dynamics), competition, and by altering ecosystem productivity. Our synthesis highlights the multitude of mechanisms that cause assemblages to be more or less spatially similar in composition (taxonomically, functionally, phylogenetically) through time. We consider that future studies should aim to enhance our collective understanding of ecological systems by clarifying the underlying mechanisms driving homogenisation or differentiation, rather than focusing only on reporting the prevalence and direction of change in beta diversity, per se.


Asunto(s)
Biodiversidad , Ecosistema , Agua Dulce , Modelos Biológicos
3.
Ecol Lett ; 25(12): 2739-2752, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36269686

RESUMEN

Species' responses to broad-scale environmental or spatial gradients are typically unimodal. Current models of species' responses along gradients tend to be overly simplistic (e.g., linear, quadratic or Gaussian GLMs), or are suitably flexible (e.g., splines, GAMs) but lack direct ecologically interpretable parameters. We describe a parametric framework for species-environment non-linear modelling ('senlm'). The framework has two components: (i) a non-linear parametric mathematical function to model the mean species response along a gradient that allows asymmetry, flattening/peakedness or bimodality; and (ii) a statistical error distribution tailored for ecological data types, allowing intrinsic mean-variance relationships and zero-inflation. We demonstrate the utility of this model framework, highlighting the flexibility of a range of possible mean functions and a broad range of potential error distributions, in analyses of fish species' abundances along a depth gradient, and how they change over time and at different latitudes.


Asunto(s)
Ambiente , Dinámicas no Lineales , Animales , Análisis Espacial , Peces
4.
Epidemics ; 37: 100521, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34775297

RESUMEN

Understanding the relative contribution of different between-farm transmission pathways is essential in guiding recommendations for mitigating disease spread. This study investigated the association between contact pathways linking poultry farms in New Zealand and the genetic relatedness of antimicrobial resistant Campylobacter jejuni Sequence Type 6964 (ST-6964), with the aim of identifying the most likely contact pathways that contributed to its rapid spread across the industry. Whole-genome sequencing was performed on 167C. jejuni ST-6964 isolates sampled from across 30 New Zealand commercial poultry enterprises. The genetic relatedness between isolates was determined using whole genome multilocus sequence typing (wgMLST). Permutational multivariate analysis of variance and distance-based linear models were used to explore the strength of the relationship between pairwise genetic associations among the C. jejuni isolates and each of several pairwise distance matrices, indicating either the geographical distance between farms or the network distance of transportation vehicles. Overall, a significant association was found between the pairwise genetic relatedness of the C. jejuni isolates and the parent company, the road distance and the network distance of transporting feed vehicles. This result suggests that the transportation of feed within the commercial poultry industry as well as other local contacts between flocks, such as the movements of personnel, may have played a significant role in the spread of C. jejuni. However, further information on the historical contact patterns between farms is needed to fully characterise the risk of these pathways and to understand how they could be targeted to reduce the spread of C. jejuni.


Asunto(s)
Antiinfecciosos , Infecciones por Campylobacter , Campylobacter jejuni , Animales , Infecciones por Campylobacter/epidemiología , Campylobacter jejuni/genética , Pollos , Genotipo , Nueva Zelanda/epidemiología , Aves de Corral
5.
Ecol Evol ; 11(15): 10600-10612, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34367600

RESUMEN

Variation in both inter- and intraspecific traits affects community dynamics, yet we know little regarding the relative importance of external environmental filters versus internal biotic interactions that shape the functional space of communities along broad-scale environmental gradients, such as latitude, elevation, or depth. We examined changes in several key aspects of functional alpha diversity for marine fishes along depth and latitude gradients by quantifying intra- and interspecific richness, dispersion, and regularity in functional trait space. We derived eight functional traits related to food acquisition and locomotion and calculated seven complementary indices of functional diversity for 144 species of marine ray-finned fishes along large-scale depth (50-1200 m) and latitudinal gradients (29°-51° S) in New Zealand waters. Traits were derived from morphological measurements taken directly from footage obtained using Baited Remote Underwater Stereo-Video systems and museum specimens. We partitioned functional variation into intra- and interspecific components for the first time using a PERMANOVA approach. We also implemented two tree-based diversity metrics in a functional distance-based context for the first time: namely, the variance in pairwise functional distance and the variance in nearest neighbor distance. Functional alpha diversity increased with increasing depth and decreased with increasing latitude. More specifically, the dispersion and mean nearest neighbor distances among species in trait space and intraspecific trait variability all increased with depth, whereas functional hypervolume (richness) was stable across depth. In contrast, functional hypervolume, dispersion, and regularity indices all decreased with increasing latitude; however, intraspecific trait variation increased with latitude, suggesting that intraspecific trait variability becomes increasingly important at higher latitudes. These results suggest that competition within and among species are key processes shaping functional multidimensional space for fishes in the deep sea. Increasing morphological dissimilarity with increasing depth may facilitate niche partitioning to promote coexistence, whereas abiotic filtering may be the dominant process structuring communities with increasing latitude.

6.
Ecology ; 102(2): e03237, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33098661

RESUMEN

Classical ecological theory posits that species partition resources such that each species occupies a unique resource niche. In general, the availability of more resources allows more species to co-occur. Thus, a strong relationship between communities of consumers and their resources is expected. However, correlations may be influenced by other layers in the food web, or by the environment. Here we show, by studying the relationship between communities of consumers (land snails) and individual diets (from seed plants), that there is in fact no direct, or at most a weak but negative, relationship. However, we found that the diversity of the individual microbiome positively correlates with both consumer community diversity and individual diet diversity in three target species. Moreover, these correlations were affected by various environmental variables, such as anthropogenic activity, habitat island size, and a possibly important nutrient source, guano runoff from nearby caves. Our results suggest that the microbiome and the environment explain the absence of correlations between diet and consumer community diversity. Hence, we advocate that microbiome inventories are routinely added to any community dietary analysis, which our study shows can be done with relatively little extra effort. Our approach presents the tools to quickly obtain an overview of the relationships between consumers and their resources. We anticipate our approach to be useful for ecologists and environmentalists studying different communities in a local food web.


Asunto(s)
Ecosistema , Microbiota , Dieta , Cadena Alimentaria
7.
Glob Chang Biol ; 26(5): 2897-2907, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32181966

RESUMEN

Determining the importance of physical and biological drivers in shaping biodiversity in diverse ecosystems remains a global challenge. Advancements have been made towards this end in large marine ecosystems with several studies suggesting environmental forcing as the primary driver. However, both empirical and theoretical studies point to additional drivers of changes in diversity involving trophic interactions and, in particular, predation. Moreover, a more integrated but less common approach to the assessment of biodiversity changes involves analyses of spatial ß diversity, whereas most studies to date assess only changes in species richness (α diversity). Recent research has established that when cod, a dominant generalist predator, was overfished and collapsed in a northwest Atlantic food web, spatial ß diversity increased; that is, the spatial structure of the fish assemblage became increasingly heterogeneous. If cod were to recover, would this situation be reversible, given the inherent complexity and non-linear dynamics that typify such systems? A dramatic increase of cod in an ecologically similar large marine ecosystem may provide an answer. Here we show that spatial ß diversity of fish assemblages in the Barents Sea decreased with increasing cod abundance, while decadal scale changes in temperature did not play a significant role. These findings indicate a reversibility of the fish assemblage structure in response to changing levels of an apex predator and highlight the frequently overlooked importance of trophic interactions in determining large-scale biodiversity patterns. As increased cod abundance was largely driven by changes in fisheries management, our study also shows that management policies and practices, particularly those involving apex predators, can have a strong effect in shaping spatial diversity patterns, and one should not restrict the focus to effects of climate change alone.


Asunto(s)
Ecosistema , Cadena Alimentaria , Animales , Biodiversidad , Explotaciones Pesqueras , Conducta Predatoria
8.
J Anim Ecol ; 89(2): 309-322, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31646627

RESUMEN

Understanding patterns and processes governing biodiversity along broad-scale environmental gradients, such as depth or latitude, requires an assessment of not just taxonomic richness, but also morphological and functional traits of organisms. Studies of traits can help to identify major selective forces acting on morphology. Currently, little is known regarding patterns of variation in the traits of fishes at broad spatial scales. The aims of this study were (a) to identify a suite of key traits in marine fishes that would allow assessment of morphological variability across broad-scale depth (50-1200 m) and latitudinal (29.15-50.91°S) gradients, and (b) to characterize patterns in these traits across depth and latitude for 144 species of ray-finned fishes in New Zealand waters. Here, we describe three new morphological traits, namely fin-base-to-perimeter ratio, jaw-length-to-mouth-width ratio, and pectoral-fin-base-to-body-depth ratio. Four other morphological traits essential for locomotion and food acquisition that are commonly measured in fishes were also included in the study. Spatial ecological distributions of individual fish species were characterized in response to a standardized replicated sampling design, and morphological measurements were obtained for each species from preserved museum specimens. With increasing depth, fishes, on average, became larger and more elongate, with higher fin-base-to-perimeter ratio and larger jaw-length-to-mouth-width ratio, all of which translates into a more eel-like anguilliform morphology. Variation in mean trait values along the depth gradient was stronger at lower latitudes for fin-base-to-perimeter ratio, elongation and total body length. Average eye size peaked at intermediate depths (500-700 m) and increased with increasing latitude at 700 m. These findings suggest that, in increasingly extreme environments, fish morphology shifts towards a body shape that favours an energy-efficient undulatory swimming style and an increase in jaw-length vs. mouth width for opportunistic feeding. Furthermore, increases in eye size with both depth and latitude indicate that changes in both the average ambient light conditions as well as seasonal variations in day-length can act to select ecomorphological adaptations in fishes.


Asunto(s)
Biodiversidad , Peces , Animales , Locomoción , Nueva Zelanda , Fenotipo
9.
Ecol Evol ; 9(6): 3276-3294, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30962892

RESUMEN

We describe a new pathway for multivariate analysis of data consisting of counts of species abundances that includes two key components: copulas, to provide a flexible joint model of individual species, and dissimilarity-based methods, to integrate information across species and provide a holistic view of the community. Individual species are characterized using suitable (marginal) statistical distributions, with the mean, the degree of over-dispersion, and/or zero-inflation being allowed to vary among a priori groups of sampling units. Associations among species are then modeled using copulas, which allow any pair of disparate types of variables to be coupled through their cumulative distribution function, while maintaining entirely the separate individual marginal distributions appropriate for each species. A Gaussian copula smoothly captures changes in an index of association that excludes joint absences in the space of the original species variables. A permutation-based filter with exact family-wise error can optionally be used a priori to reduce the dimensionality of the copula estimation problem. We describe in detail a Monte Carlo expectation maximization algorithm for efficient estimation of the copula correlation matrix with discrete marginal distributions (counts). The resulting fully parameterized copula models can be used to simulate realistic ecological community data under fully specified null or alternative hypotheses. Distributions of community centroids derived from simulated data can then be visualized in ordinations of ecologically meaningful dissimilarity spaces. Multinomial mixtures of data drawn from copula models also yield smooth power curves in dissimilarity-based settings. Our proposed analysis pathway provides new opportunities to combine model-based approaches with dissimilarity-based methods to enhance understanding of ecological systems. We demonstrate implementation of the pathway through an ecological example, where associations among fish species were found to increase after the establishment of a marine reserve.

10.
PLoS One ; 13(8): e0202197, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30114275

RESUMEN

Pleurobranchaea maculata is a rarely studied species of the Heterobranchia found throughout the south and western Pacific-and recently recorded in Argentina-whose population genetic structure is unknown. Interest in the species was sparked in New Zealand following a series of dog deaths caused by ingestions of slugs containing high levels of the neurotoxin tetrodotoxin. Here we describe the genetic structure and demographic history of P. maculata populations from five principle locations in New Zealand based on extensive analyses of 12 microsatellite loci and the COI and CytB regions of mitochondrial DNA (mtDNA). Microsatellite data showed significant differentiation between northern and southern populations with population structure being associated with previously described regional variations in tetrodotoxin concentrations. However, mtDNA sequence data did not support such structure, revealing a star-shaped haplotype network with estimates of expansion time suggesting a population expansion in the Pleistocene era. Inclusion of publicly available mtDNA sequence sea slugs from Argentina did not alter the star-shaped network. We interpret our data as indicative of a single founding population that fragmented following geographical changes that brought about the present day north-south divide in New Zealand waters. Lack of evidence of cryptic species supports data indicating that differences in toxicity of individuals among regions are a consequence of differences in diet.


Asunto(s)
Pleurobranchaea/genética , Animales , ADN Mitocondrial/genética , Enfermedades de los Perros/etiología , Perros , Variación Genética , Genética de Población , Haplotipos , Repeticiones de Microsatélite , Nueva Zelanda , Océano Pacífico , Filogenia , Pleurobranchaea/patogenicidad , Tetrodotoxina/análisis , Tetrodotoxina/genética , Tetrodotoxina/envenenamiento
11.
PLoS One ; 12(8): e0183669, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28829820

RESUMEN

The potential effectiveness of marine protected areas (MPAs) as a conservation tool for large sharks has been questioned due to the limited spatial extent of most MPAs in contrast to the complex life history and high mobility of many sharks. Here we evaluated the movement dynamics of a highly migratory apex predatory shark (tiger shark Galeocerdo cuvier) at the Galapagos Marine Reserve (GMR). Using data from satellite tracking passive acoustic telemetry, and stereo baited remote underwater video, we estimated residency, activity spaces, site fidelity, distributional abundances and migration patterns from the GMR and in relation to nesting beaches of green sea turtles (Chelonia mydas), a seasonally abundant and predictable prey source for large tiger sharks. Tiger sharks exhibited a high degree of philopatry, with 93% of the total satellite-tracked time across all individuals occurring within the GMR. Large sharks (> 200 cm TL) concentrated their movements in front of the two most important green sea turtle-nesting beaches in the GMR, visiting them on a daily basis during nocturnal hours. In contrast, small sharks (< 200 cm TL) rarely visited turtle-nesting areas and displayed diurnal presence at a third location where only immature sharks were found. Small and some large individuals remained in the three study areas even outside of the turtle-nesting season. Only two sharks were satellite-tracked outside of the GMR, and following long-distance migrations, both individuals returned to turtle-nesting beaches at the subsequent turtle-nesting season. The spatial patterns of residency and site fidelity of tiger sharks suggest that the presence of a predictable source of prey and suitable habitats might reduce the spatial extent of this large shark that is highly migratory in other parts of its range. This highly philopatric behaviour enhances the potential effectiveness of the GMR for their protection.


Asunto(s)
Ecosistema , Conducta Predatoria , Tiburones/fisiología , Migración Animal , Animales , Océano Atlántico , Femenino , Masculino , Densidad de Población , Tortugas
12.
Sci Rep ; 7(1): 8081, 2017 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-28808296

RESUMEN

Marine ecosystems are difficult to sample quantitatively at increasing depth. Hence, few studies attempt to measure patterns of beta diversity for ecological communities in the deep sea. Here we (i) present and quantify large-scale gradients in fish community structure along depth and latitude gradients of the New Zealand EEZ, (ii) obtain rigorous quantitative estimates of these depth (50-1200 m) and latitudinal effects (29.15-50.91°S) and their interaction, and (iii) explicitly model how latitudinal beta diversity of fishes varies with depth. The sampling design was highly structured, replicated and stratified for latitude and depth, using data obtained from 345 standardised baited remote underwater stereo-video deployments. Results showed that gradients in fish community structure along depth and latitude were strong and interactive in New Zealand waters; latitudinal variation in fish communities progressively decreased with depth following an exponential decay (r 2 = 0.96), revealing increasingly similar fish communities with increasing depth. In contrast, variation in fish community structure along the depth gradient was of a similar magnitude across all of the latitudes investigated here. We conclude that an exponential decay in beta diversity vs depth exists for fish communities present in areas shallower than the New Zealand upper continental slope.


Asunto(s)
Biota/fisiología , Peces/fisiología , Animales , Biodiversidad , Ecosistema , Geografía/métodos , Nueva Zelanda
13.
PLoS One ; 12(2): e0171540, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28225774

RESUMEN

Tropical bird assemblages display patterns of high alpha and beta diversity and, as tropical birds exhibit strong habitat specificity, their spatial distributions are generally assumed to be driven primarily by environmental heterogeneity and interspecific interactions. However, spatial distributions of some Amazonian forest birds are also often restricted by large rivers and other large-scale topographic features, suggesting that dispersal limitation may also play a role in driving species' turnover. In this study, we evaluated the effects of environmental characteristics, topographic and spatial variables on variation in local assemblage structure and diversity of birds in an old-growth forest in central Amazonia. Birds were mist-netted in 72 plots distributed systematically across a 10,000 ha reserve in each of three years. Alpha diversity remained stable through time, but species composition changed. Spatial variation in bird-assemblage structure was significantly related to environmental and topographic variables but not strongly related to spatial variables. At a broad scale, we found bird assemblages to be significantly distinct between two watersheds that are divided by a central ridgeline. We did not detect an effect of the ridgeline per se in driving these patterns, indicating that most birds are able to fly across it, and that differences in assemblage structure between watersheds may be due to unmeasured environmental variables or unique combinations of measured variables. Our study indicates that complex geography and landscape features can act together with environmental variables to drive changes in the diversity and composition of tropical bird assemblages at local scales, but highlights that we still know very little about what makes different parts of tropical forest suitable for different species.


Asunto(s)
Biodiversidad , Aves , Ecosistema , Bosques , Animales , Brasil , Dinámica Poblacional , Especificidad de la Especie
14.
Ecol Evol ; 6(18): 6648-6661, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27777737

RESUMEN

Many large, fishery-targeted predatory species have attained very high relative densities as a direct result of protection by no-take marine reserves. Indirect effects, via interactions with targeted species, may also occur for species that are not themselves targeted by fishing. In some temperate rocky reef ecosystems, indirect effects have caused profound changes in community structure, notably the restoration of predator-urchin-macroalgae trophic cascades. Yet, indirect effects on small benthic reef fishes remain poorly understood, perhaps because of behavioral associations with complex, refuge-providing habitats. Few, if any, studies have evaluated any potential effects of marine reserves on habitat associations in small benthic fishes. We surveyed densities of small benthic fishes, including some endemic species of triplefin (Tripterygiidae), along with fine-scale habitat features in kelp forests on rocky reefs in and around multiple marine reserves in northern New Zealand over 3 years. Bayesian generalized linear mixed models were used to evaluate evidence for (1) main effects of marine reserve protection, (2) associations with habitat gradients, including complexity, and (3) differences in habitat associations inside versus outside reserves. No evidence of overall main effects of marine reserves on species richness or densities of fishes was found. Both richness and densities showed strong associations with gradients in habitat features, particularly habitat complexity. In addition, some species exhibited reserve-by-habitat interactions, having different associations with habitat gradients inside versus outside marine reserves. Two species (Ruanoho whero and Forsterygion flavonigrum) showed stronger positive associations with habitat complexity inside reserves. These results are consistent with the presence of a behavioral risk effect, whereby prey fishes are more strongly attracted to habitats that provide refuge from predation in areas where predators are more abundant. This work highlights the importance of habitat structure and the potential for fishing to affect behavioral interactions and the interspecific dynamic attributes of community structure beyond simple predator-prey consumption and archetypal trophic cascades.

15.
J Anim Ecol ; 84(5): 1242-52, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25981204

RESUMEN

1. Exploitation of living marine resources has resulted in major changes to populations of targeted species and functional groups of large-bodied species in the ocean. However, the effects of overfishing and collapse of large top predators on the broad-scale biodiversity of oceanic ecosystems remain largely unexplored. 2. Populations of the Atlantic cod (Gadus morhua) were overfished and several collapsed in the early 1990s across Atlantic Canada, providing a unique opportunity to study potential ecosystem-level effects of the reduction of a dominant predator on fish biodiversity, and to identify how such effects might interact with other environmental factors, such as changes in climate, over time. 3. We combined causal modelling with model selection and multimodel inference to analyse 41 years of fishery-independent survey data (1970-2010) and quantify ecosystem-level effects of overfishing and climate variation on the biodiversity of fishes across a broad area (172 000 km(2) ) of the Scotian Shelf. 4. We found that alpha and beta diversity increased with decreases in cod occurrence; fish communities were less homogeneous and more variable in systems where cod no longer dominated. These effects were most pronounced in the colder north-eastern parts of the Scotian Shelf. 5. Our results provide strong evidence that intensive harvesting (and collapse) of marine apex predators can have large impacts on biodiversity, with far-reaching consequences for ecological stability across an entire ecosystem.


Asunto(s)
Biodiversidad , Explotaciones Pesqueras , Cadena Alimentaria , Gadus morhua/fisiología , Animales , Océano Atlántico , Modelos Biológicos , Estaciones del Año , Temperatura , Tiempo (Meteorología)
16.
Ecol Lett ; 18(1): 66-73, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25438826

RESUMEN

Ecological studies require key decisions regarding the appropriate size and number of sampling units. No methods currently exist to measure precision for multivariate assemblage data when dissimilarity-based analyses are intended to follow. Here, we propose a pseudo multivariate dissimilarity-based standard error (MultSE) as a useful quantity for assessing sample-size adequacy in studies of ecological communities. Based on sums of squared dissimilarities, MultSE measures variability in the position of the centroid in the space of a chosen dissimilarity measure under repeated sampling for a given sample size. We describe a novel double resampling method to quantify uncertainty in MultSE values with increasing sample size. For more complex designs, values of MultSE can be calculated from the pseudo residual mean square of a permanova model, with the double resampling done within appropriate cells in the design. R code functions for implementing these techniques, along with ecological examples, are provided.


Asunto(s)
Biota , Ecología/métodos , Modelos Teóricos , Análisis Multivariante , Proyectos de Investigación
17.
PLoS One ; 8(3): e57918, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23526960

RESUMEN

Knowledge of broad-scale global patterns in beta diversity (i.e., variation or turnover in identities of species) for marine systems is in its infancy. We analysed the beta diversity of groundfish communities along the North American Pacific coast, from trawl data spanning 32.57°N to 48.52°N and 51 m to 1200 m depth. Analyses were based on both the Jaccard measure and the probabilistic Raup-Crick measure, which accounts for variation in alpha diversity. Overall, beta diversity decreased with depth, and this effect was strongest at lower latitudes. Superimposed on this trend were peaks in beta diversity at around 400-600 m and also around 1000-1200 m, which may indicate high turnover around the edges of the oxygen minimum zone. Beta diversity was also observed to decrease with latitude, but this effect was only observed in shallower waters (<200 m); latitudinal turnover began to disappear at depths >800 m. At shallower depths (<200 m), peaks in latitudinal turnover were observed at ∼43°N, 39°N, 35°N and 31°N, which corresponded well with several classically observed oceanographic boundaries. Turnover with depth was stronger than latitudinal turnover, and is likely to reflect strong environmental filtering over relatively short distances. Patterns in beta diversity, including latitude-by-depth interactions, should be integrated with other biodiversity measures in ecosystem-based management and conservation of groundfish communities.


Asunto(s)
Biodiversidad , Peces/clasificación , Animales , Ecosistema , Geografía , Océano Pacífico , Especificidad de la Especie
18.
PLoS One ; 7(10): e48522, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23119045

RESUMEN

BACKGROUND: Continental slopes are among the steepest environmental gradients on earth. However, they still lack finer quantification and characterisation of their faunal diversity patterns for many parts of the world. METHODOLOGY/PRINCIPAL FINDINGS: Changes in fish community structure and diversity along a depth gradient from 50 to 1200 m were studied from replicated stereo baited remote underwater video deployments within each of seven depth zones at three locations in north-eastern New Zealand. Strong, but gradual turnover in the identities of species and community structure was observed with increasing depth. Species richness peaked in shallow depths, followed by a decrease beyond 100 m to a stable average value from 700 to 1200 m. Evenness increased to 700 m depth, followed by a decrease to 1200 m. Average taxonomic distinctness △(+) response was unimodal with a peak at 300 m. The variation in taxonomic distinctness Λ(+) first decreased sharply from 50 to 300 m, then increased beyond 500 m depth, indicating that species from deep samples belonged to more distant taxonomic groups than those from shallow samples. Fishes with northern distributions progressively decreased in their proportional representation with depth whereas those with widespread distributions increased. CONCLUSIONS/SIGNIFICANCE: This study provides the first characterization of diversity patterns for bait-attracted fish species on continental slopes in New Zealand and is an imperative primary step towards development of explanatory and predictive ecological models, as well as being fundamental for the implementation of efficient management and conservation strategies for fishery resources.


Asunto(s)
Biodiversidad , Peces , Animales , Ecosistema , Islas , Nueva Zelanda , Dinámica Poblacional
19.
Ecol Lett ; 15(8): 778-85, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22590997

RESUMEN

Understanding the divergence of behavioural signals in isolated populations is critical to knowing how certain barriers to gene flow can develop. For many bird species, songs are essential for conspecific recognition and mate choice. Measuring the rate of song divergence in natural populations is difficult, but translocations of endangered birds to isolated islands for conservation purposes can yield insights, as the age and source of founder populations are completely known. We found significant and rapid evolution in the structure and diversity of bird song in North Island saddlebacks, Philesturnus rufusater, in New Zealand, with two distinct lineages evolving in < 50 years. The strong environmental filters of serial translocations resulted in cultural bottlenecks that generated drift and reduced song variability within islands. This rapid divergence coupled with loss of song diversity has important implications for the behavioural evolution of this species, demonstrating previously unrecognised biological consequences of conservation management.


Asunto(s)
Passeriformes , Vocalización Animal , Acústica , Animales , Biodiversidad , Conservación de los Recursos Naturales , Nueva Zelanda , Dinámica Poblacional
20.
Ecology ; 93(12): 2526-32, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23431584

RESUMEN

Zero-inflated versions of standard distributions for count data are often required in order to account for excess zeros when modeling the abundance of organisms. Such distributions typically have as parameters lambda, the mean of the count distribution, and pi, the probability of an excess zero. Implementations of zero-inflated models in ecology typically model lambda using a set of predictor variables, and pi is fit either as a constant or with its own separate model. Neither of these approaches makes use of any relationship that might exist between pi and lambda. However, for many species, the rate of occupancy is closely and positively related to its average abundance. Here, this relationship was incorporated into the model for zero inflation by functionally linking pi to lambda, and was demonstrated in a study of snapper (Pagrus auratus) in and around a marine reserve. This approach has several potential practical advantages, including better computational performance and more straightforward model interpretation. It is concluded that, where appropriate, directly linking pi to lambda can produce more ecologically accurate and parsimonious statistical models of species abundance data.


Asunto(s)
Ecosistema , Peces/fisiología , Modelos Biológicos , Animales , Conservación de los Recursos Naturales , Monitoreo del Ambiente , Dinámica Poblacional , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA