Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Acta Neuropathol Commun ; 12(1): 97, 2024 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879502

RESUMEN

Wasteosomes (or corpora amylacea) are polyglucosan bodies that appear in the human brain with aging and in some neurodegenerative diseases, and have been suggested to have a potential role in a nervous system cleaning mechanism. Despite previous studies in several neurodegenerative disorders, their status in frontotemporal lobar degeneration (FTLD) remains unexplored. Our study aims to characterize wasteosomes in the three primary FTLD proteinopathies, assessing frequency, distribution, protein detection, and association with aging or disease duration. Wasteosome scores were obtained in various brain regions from 124 post-mortem diagnosed sporadic FTLD patients, including 75 participants with tau (FTLD-tau), 42 with TAR DNA-binding protein 43 (FTLD-TDP), and 7 with Fused in Sarcoma (FTLD-FUS) proteinopathies, along with 29 control subjects. The wasteosome amount in each brain region for the different FLTD patients was assessed with a permutation test with age at death and sex as covariables, and multiple regressions explored associations with age at death and disease duration. Double immunofluorescence studies examined altered proteins linked to FTLD in wasteosomes. FTLD patients showed a higher accumulation of wasteosomes than control subjects, especially those with FTLD-FUS. Unlike FTLD-TDP and control subjects, wasteosome accumulation did not increase with age in FTLD-tau and FTLD-FUS. Cases with shorter disease duration in FTLD-tau and FTLD-FUS seemed to exhibit higher wasteosome quantities, whereas FTLD-TDP appeared to show an increase with disease progression. Immunofluorescence studies revealed the presence of tau and phosphorylated-TDP-43 in the periphery of isolated wasteosomes in some patients with FTLD-tau and FTLD-TDP, respectively. Central inclusions of FUS were observed in a higher number of wasteosomes in FTLD-FUS patients. These findings suggest a role of wasteosomes in FTLD, especially in the more aggressive forms of FLTD-FUS. Detecting these proteins, particularly FUS, in wasteosomes from cerebrospinal fluid could be a potential biomarker for FTLD.


Asunto(s)
Proteínas de Unión al ADN , Degeneración Lobar Frontotemporal , Proteína FUS de Unión a ARN , Proteínas tau , Humanos , Degeneración Lobar Frontotemporal/patología , Degeneración Lobar Frontotemporal/metabolismo , Femenino , Masculino , Proteína FUS de Unión a ARN/metabolismo , Anciano , Proteínas tau/metabolismo , Persona de Mediana Edad , Anciano de 80 o más Años , Proteínas de Unión al ADN/metabolismo , Encéfalo/patología , Encéfalo/metabolismo
2.
Int J Mol Sci ; 25(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38791483

RESUMEN

Epigenetics, a potential underlying pathogenic mechanism of neurodegenerative diseases, has been in the scope of several studies performed so far. However, there is a gap in regard to analyzing different forms of early-onset dementia and the use of Lymphoblastoid cell lines (LCLs). We performed a genome-wide DNA methylation analysis on sixty-four samples (from the prefrontal cortex and LCLs) including those taken from patients with early-onset forms of Alzheimer's disease (AD) and frontotemporal dementia (FTD) and healthy controls. A beta regression model and adjusted p-values were used to obtain differentially methylated positions (DMPs) via pairwise comparisons. A correlation analysis of DMP levels with Clariom D array gene expression data from the same cohort was also performed. The results showed hypermethylation as the most frequent finding in both tissues studied in the patient groups. Biological significance analysis revealed common pathways altered in AD and FTD patients, affecting neuron development, metabolism, signal transduction, and immune system pathways. These alterations were also found in LCL samples, suggesting the epigenetic changes might not be limited to the central nervous system. In the brain, CpG methylation presented an inverse correlation with gene expression, while in LCLs, we observed mainly a positive correlation. This study enhances our understanding of the biological pathways that are associated with neurodegeneration, describes differential methylation patterns, and suggests LCLs are a potential cell model for studying neurodegenerative diseases in earlier clinical phases than brain tissue.


Asunto(s)
Enfermedad de Alzheimer , Metilación de ADN , Epigénesis Genética , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Femenino , Masculino , Persona de Mediana Edad , Encéfalo/metabolismo , Encéfalo/patología , Estudio de Asociación del Genoma Completo , Anciano , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Demencia Frontotemporal/metabolismo , Islas de CpG/genética , Línea Celular , Linfocitos/metabolismo
3.
Alzheimers Res Ther ; 16(1): 66, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38539243

RESUMEN

BACKGROUND: Pathogenic heterozygous mutations in the progranulin gene (GRN) are a key cause of frontotemporal dementia (FTD), leading to significantly reduced biofluid concentrations of the progranulin protein (PGRN). This has led to a number of ongoing therapeutic trials aiming to treat this form of FTD by increasing PGRN levels in mutation carriers. However, we currently lack a complete understanding of factors that affect PGRN levels and potential variation in measurement methods. Here, we aimed to address this gap in knowledge by systematically reviewing published literature on biofluid PGRN concentrations. METHODS: Published data including biofluid PGRN concentration, age, sex, diagnosis and GRN mutation were collected for 7071 individuals from 75 publications. The majority of analyses (72%) had focused on plasma PGRN concentrations, with many of these (56%) measured with a single assay type (Adipogen) and so the influence of mutation type, age at onset, sex, and diagnosis were investigated in this subset of the data. RESULTS: We established a plasma PGRN concentration cut-off between pathogenic mutation carriers and non-carriers of 74.8 ng/mL using the Adipogen assay based on 3301 individuals, with a CSF concentration cut-off of 3.43 ng/mL. Plasma PGRN concentration varied by GRN mutation type as well as by clinical diagnosis in those without a GRN mutation. Plasma PGRN concentration was significantly higher in women than men in GRN mutation carriers (p = 0.007) with a trend in non-carriers (p = 0.062), and there was a significant but weak positive correlation with age in both GRN mutation carriers and non-carriers. No significant association was seen with weight or with TMEM106B rs1990622 genotype. However, higher plasma PGRN levels were seen in those with the GRN rs5848 CC genotype in both GRN mutation carriers and non-carriers. CONCLUSIONS: These results further support the usefulness of PGRN concentration for the identification of the large majority of pathogenic mutations in the GRN gene. Furthermore, these results highlight the importance of considering additional factors, such as mutation type, sex and age when interpreting PGRN concentrations. This will be particularly important as we enter the era of trials for progranulin-associated FTD.


Asunto(s)
Demencia Frontotemporal , Masculino , Humanos , Femenino , Progranulinas/genética , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Péptidos y Proteínas de Señalización Intercelular/genética , Virulencia , Mutación/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética
4.
J Alzheimers Dis ; 97(3): 1091-1096, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38250774

RESUMEN

We analyzed Lewy body (LB) pathology in 18 autosomal dominant Alzheimer's disease (ADAD) brains via immunohistochemistry. Real-time quaking induced conversion was used to detect misfolded α-synuclein (α-syn) in 18 living ADAD cerebrospinal fluid (CSF) samples. Concomitant LB pathology was present in 44% ADAD brains. Only 6% CSF samples were positive for misfolded α-syn. In an additional AD sample, all patients with confirmed LB presented misfolded α-syn in postmortem CSF regardless of the LB staging. In conclusion, misfolded α-syn in CSF was scarce in symptomatic living ADAD individuals, in contrast to postmortem brain tissue. These results suggest late appearance of LB pathology in ADAD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad por Cuerpos de Lewy , Humanos , alfa-Sinucleína/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico , Cuerpos de Lewy/patología , Enfermedad por Cuerpos de Lewy/patología , Proteínas tau/líquido cefalorraquídeo
5.
J Neurol ; 271(3): 1428-1438, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38012398

RESUMEN

BACKGROUND AND OBJECTIVE: Alzheimer's disease (AD) and frontotemporal dementia (FTD) show different patterns of cortical thickness (CTh) loss compared with healthy controls (HC), even though there is relevant heterogeneity between individuals suffering from each of these diseases. Thus, we developed CTh models to study individual variability in AD, FTD, and HC. METHODS: We used the baseline CTh measures of 379 participants obtained from the structural MRI processed with FreeSurfer. A total of 169 AD patients (63 ± 9 years, 65 men), 88 FTD patients (64 ± 9 years, 43 men), and 122 HC (62 ± 10 years, 47 men) were studied. We fitted region-wise temporal models of CTh using Support Vector Regression. Then, we studied associations of individual deviations from the model with cerebrospinal fluid levels of neurofilament light chain (NfL) and 14-3-3 protein and Mini-Mental State Examination (MMSE). Furthermore, we used real longitudinal data from 144 participants to test model predictivity. RESULTS: We defined CTh spatiotemporal models for each group with a reliable fit. Individual deviation correlated with MMSE for AD and with NfL for FTD. AD patients with higher deviations from the trend presented higher MMSE values. In FTD, lower NfL levels were associated with higher deviations from the CTh prediction. For AD and HC, we could predict longitudinal visits with the presented model trained with baseline data. For FTD, the longitudinal visits had more variability. CONCLUSION: We highlight the value of CTh models for studying AD and FTD longitudinal changes and variability and their relationships with cognitive features and biomarkers.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Masculino , Humanos , Enfermedad de Alzheimer/diagnóstico , Demencia Frontotemporal/diagnóstico por imagen , Imagen por Resonancia Magnética , Pruebas de Estado Mental y Demencia , Biomarcadores/líquido cefalorraquídeo
6.
Alzheimers Dement ; 20(3): 1515-1526, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38018380

RESUMEN

INTRODUCTION: Neuroinflammation is a major contributor to the progression of frontotemporal dementia (FTD). Galectin-3 (Gal-3), a microglial activation regulator, holds promise as a therapeutic target and potential biomarker. Our study aimed to investigate Gal-3 levels in patients with FTD and assess its diagnostic potential. METHODS: We examined Gal-3 levels in brain, serum, and cerebrospinal fluid (CSF) samples of patients with FTD and controls. Multiple linear regressions between Gal-3 levels and other FTD markers were explored. RESULTS: Gal-3 levels were increased significantly in patients with FTD, mainly across brain tissue and CSF, compared to controls. Remarkably, Gal-3 levels were higher in cases with tau pathology than TAR-DNA Binding Protein 43 (TDP-43) pathology. Only MAPT mutation carriers displayed increased Gal-3 levels in CSF samples, which correlated with total tau and 14-3-3. DISCUSSION: Our findings underscore the potential of Gal-3 as a diagnostic marker for FTD, particularly in MAPT cases, and highlights the relation of Gal-3 with neuronal injury markers.


Asunto(s)
Demencia Frontotemporal , Humanos , Demencia Frontotemporal/genética , Demencia Frontotemporal/diagnóstico , Galectina 3/genética , Galectina 3/metabolismo , Proteínas tau/líquido cefalorraquídeo , Encéfalo/patología , Biomarcadores/líquido cefalorraquídeo , Proteína C9orf72/genética , Mutación/genética
7.
J Neurol ; 271(4): 1973-1984, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38151575

RESUMEN

Plasma biomarkers have emerged as promising tools for identifying amyloid beta (Aß) pathology. Before implementation in routine clinical practice, confounding factors modifying their concentration beyond neurodegenerative diseases should be identified. We studied the association of a comprehensive list of demographics, comorbidities, medication and laboratory parameters with plasma p-tau181, glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) on a prospective memory clinic cohort and studied their impact on diagnostic accuracy for discriminating CSF/amyloid PET-defined Aß status. Three hundred sixty patients (mean age 66.5 years, 55% females, 53% Aß positive) were included. Sex, age and Aß status-adjusted models showed that only estimated glomerular filtration rate (eGFR, standardized ß -0.115 [-0.192 to -0.035], p = 0.005) was associated with p-tau181 levels, although with a much smaller effect than Aß status (0.685 [0.607-0.763], p < 0.001). Age, sex, body mass index (BMI), Charlson comorbidity index (CCI) and eGFR significantly modified GFAP concentration. Age, blood volume (BV) and eGFR were associated with NfL levels. p-tau181 predicted Aß status with 87% sensitivity and specificity with no relevant increase in diagnostic performance by adding any of the confounding factors. Using two cut-offs, plasma p-tau181 could have spared 62% of amyloid-PET/CSF testing. Excluding patients with chronic kidney disease did not change the proposed cut-offs nor the diagnostic performance. In conclusion, in a memory clinic cohort, age, sex, eGFR, BMI, BV and CCI slightly modified plasma p-tau181, GFAP and NfL concentrations but their impact on the diagnostic accuracy of plasma biomarkers for Aß status discrimination was minimal.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Femenino , Humanos , Anciano , Masculino , Instituciones de Atención Ambulatoria , Biomarcadores , Volumen Sanguíneo , Demografía , Proteínas tau
9.
Eur J Neurol ; 30(3): 597-605, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463489

RESUMEN

BACKGROUND AND PURPOSE: How the APOE genotype can differentially affect cortical and subcortical memory structures in biomarker-confirmed early-onset (EOAD) and late-onset (LOAD) Alzheimer's disease (AD) was assessed. METHOD: Eighty-seven cerebrospinal fluid (CSF) biomarker-confirmed AD patients were classified according to their APOE genotype and age at onset. 28 were EOAD APOE4 carriers (+EOAD), 21 EOAD APOE4 non-carriers (-EOAD), 23 LOAD APOE4 carriers (+LOAD) and 15 LOAD APOE4 non-carriers (-LOAD). Grey matter (GM) volume differences were analyzed using voxel-based morphometry in Papez circuit regions. Multiple regression analyses were performed to determine the relation between GM volume loss and cognition. RESULTS: Significantly more mammillary body atrophy in +EOAD compared to -EOAD is reported. The medial temporal and posterior cingulate cortex showed less GM in +LOAD compared to -LOAD. Medial temporal GM volume loss was also found in +EOAD compared to -LOAD. With an exception for +EOAD, medial temporal GM was strongly associated with episodic memory in the three groups, whilst posterior cingulate cortex GM volume was more related with visuospatial abilities. Visuospatial abilities and episodic memory were also associated with the anterior thalamic nucleus in -LOAD. CONCLUSIONS: Our results show that the APOE genotype has a significant effect on GM integrity as a function of age of disease onset. Specifically, whilst LOAD APOE4 genotype is mostly associated with increased medial temporal and parietal atrophy compared to -LOAD, for EOAD APOE4 might have a more specific effect on subcortical (mammillary body) structures. The findings suggest that APOE genotype needs to be taken into account when classifying patients by age at onset.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Apolipoproteína E4/genética , Imagen por Resonancia Magnética/métodos , Edad de Inicio , Encéfalo/patología , Atrofia/patología , Biomarcadores
10.
Neurology ; 100(8): e860-e873, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36450604

RESUMEN

BACKGROUND AND OBJECTIVES: Blood-based biomarkers have emerged as minimally invasive options for evaluating cognitive impairment. Most studies to date have assessed them in research cohorts, limiting their generalization to everyday clinical practice. We evaluated their diagnostic performance and clinical applicability in a prospective, real-world, memory clinic cohort. METHODS: All patients referred with suspected cognitive impairment between July 2019 and June 2021 were prospectively invited to participate. Five plasma biomarkers (tau phosphorylated at threonine 181 [p-tau181], glial fibrillary acidic protein [GFAP], neurofilament light chain [NfL], total tau [t-tau], and ubiquitin C-terminal hydrolase L1 [UCH-L1]) were determined with single-molecule array. Performance was assessed in comparison to clinical diagnosis (blinded to plasma results) and amyloid status (CSF/PET). A group of cognitively unimpaired (CU) controls was also included. RESULTS: Three hundred forty-nine participants (mean age 68, SD 8.3 years) and 36 CU controls (mean age 61.7, SD 8.2 years) were included. In the subcohort with available Alzheimer disease (AD) biomarkers (n = 268), plasma p-tau181 and GFAP had a high diagnostic accuracy to differentiate AD from non-neurodegenerative causes (area under the receiver operating characteristic curve 0.94 and 0.92, respectively), with p-tau181 systematically outperforming GFAP. Plasma p-tau181 levels predicted amyloid status (85% sensitivity and specificity) with accurate individual prediction in approximately 60% of the patients. Plasma NfL differentiated frontotemporal dementia (FTD) syndromes from CU (0.90) and non-neurodegenerative causes (0.93), whereas the discriminative capacity with AD and between all neurodegenerative and non-neurodegenerative causes was less accurate. A combination of p-tau181 and NfL identified FTD with 82% sensitivity and 85% specificity and had a negative predictive value for neurodegenerative diagnosis of 86%, ruling out half of the non-neurodegenerative diagnoses. In the subcohort without AD biomarkers, similar results were obtained. T-tau and UCH-L1 did not offer added diagnostic value. DISCUSSION: Plasma p-tau181 predicted amyloid status with high accuracy and could have potentially avoided CSF/amyloid PET testing in approximately 60% of subjects in a memory clinic setting. NfL was useful for identifying FTD from non-neurodegenerative causes but behaved worse than p-tau181 in all other comparisons. Combining p-tau181 and NfL improved diagnostic performance for FTD and non-neurodegenerative diagnoses. However, the 14% false-negative results suggest that further improvement is needed before implementation outside memory clinics. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that plasma p-tau181 correlates with the presence or absence of AD and a combination of plasma p-tau181 and NfL correlates moderately well with a diagnosis of FTD.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Memoria Episódica , Enfermedad de Pick , Humanos , Anciano , Persona de Mediana Edad , Proteínas tau , Demencia Frontotemporal/diagnóstico , Péptidos beta-Amiloides , Enfermedad de Alzheimer/psicología , Biomarcadores
11.
Ann Clin Transl Neurol ; 9(12): 1962-1973, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36398437

RESUMEN

OBJECTIVES: Early- and late-onset Alzheimer's disease (EOAD and LOAD) share the same neuropathological traits but show distinct cognitive features. We aimed to explore baseline and longitudinal outcomes of global and domain-specific cognitive function in a well characterized cohort of patients with a biomarker-based diagnosis. METHODS: In this retrospective cohort study, 195 participants were included and classified according to their age, clinical status, and CSF AD biomarker profile: 89 EOAD, 37 LOAD, 46 young healthy controls (age ≤ 65 years), and 23 old healthy controls (>65 years). All subjects underwent clinical and neuropsychological assessment, neuroimaging, APOE genotyping and lumbar puncture. RESULTS: We found distinct neuropsychological profiles between EOAD and LOAD at the time of diagnosis. Both groups showed similar performances on memory and language domains, but the EOAD patients displayed worsened deficits in visual perception, praxis, and executive tasks (p < 0.05). Longitudinally, cognitive decline in EOAD was more pronounced than LOAD in the global outcomes at the expense of these non-amnestic domains. We found that years of education significantly influenced the decline in most of the neuropsychological tests. Besides, the APOE ε4 status showed a significant effect on the decline of memory-related tasks within the EOAD cohort (p < 0.05). INTERPRETATION: Age of onset is a main factor shaping the cognitive trajectories in AD patients, with younger age driving to a steeper decline of the non-memory domains. Years of education are related to a transversal decline in all cognitive domains and APOE ε4 status to a specific decline in memory performance in EOAD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Anciano , Enfermedad de Alzheimer/patología , Estudios Retrospectivos , Edad de Inicio , Disfunción Cognitiva/etiología , Pruebas Neuropsicológicas
12.
Eur J Neurol ; 29(12): 3623-3632, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36005384

RESUMEN

BACKGROUND AND PURPOSE: Sex is believed to drive heterogeneity in Alzheimer's disease (AD), although evidence in early-onset AD (EOAD; <65 years) is scarce. METHODS: We included 62 EOAD patients and 44 healthy controls (HCs) with core AD cerebrospinal fluid (CSF) biomarkers, neurofilament light chain levels, neuropsychological assessment, and 3-T magnetic resonance imaging. We measured cortical thickness (CTh) and hippocampal subfield volumes (HpS) using FreeSurfer. Adjusted linear models were used to analyze sex-differences and the relationship between atrophy and cognition. RESULTS: Compared to same-sex HCs, female EOAD subjects showed greater cognitive impairment and broader atrophy burden than male EOAD subjects. In a direct female-EOAD versus male-EOAD comparison, there were slight differences in temporal CTh, with no differences in cognition or HpS. CSF tau levels were higher in female EOAD than in male EOAD subjects. Greater atrophy was associated with worse cognition in female EOAD subjects. CONCLUSIONS: At diagnosis, there are sex differences in the pattern of cognitive impairment, atrophy burden, and CSF tau in EOAD, suggesting there is an influence of sex on pathology spreading and susceptibility to the disease in EOAD.


Asunto(s)
Enfermedad de Alzheimer , Femenino , Humanos , Masculino , Enfermedad de Alzheimer/patología , Caracteres Sexuales , Atrofia , Imagen por Resonancia Magnética/métodos , Cognición , Biomarcadores/líquido cefalorraquídeo
13.
Mol Neurobiol ; 59(10): 6411-6428, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35962298

RESUMEN

Sporadic early-onset Alzheimer's disease (EOAD) and autosomal dominant Alzheimer's disease (ADAD) provide the opportunity to investigate the physiopathological mechanisms in the absence of aging, present in late-onset forms. Frontotemporal dementia (FTD) causes early-onset dementia associated to tau or TDP43 protein deposits. A 15% of FTD cases are caused by mutations in C9orf72, GRN, or MAPT genes. Lymphoblastoid cell lines (LCLs) have been proposed as an alternative to brain tissue for studying earlier phases of neurodegenerative diseases. The aim of this study is to investigate the expression profile in EOAD, ADAD, and sporadic and genetic FTD (sFTD and gFTD, respectively), using brain tissue and LCLs. Sixty subjects of the following groups were included: EOAD, ADAD, sFTD, gFTD, and controls. Gene expression was analyzed with Clariom D microarray (Affymetrix). Brain tissue pairwise comparisons revealed six common differentially expressed genes (DEG) for all the patients' groups compared with controls: RGS20, WIF1, HSPB1, EMP3, S100A11 and GFAP. Common up-regulated biological pathways were identified both in brain and LCLs (including inflammation and glial cell differentiation), while down-regulated pathways were detected mainly in brain tissue (including synaptic signaling, metabolism and mitochondrial dysfunction). CD163, ADAMTS9 and LIN7A gene expression disruption was validated by qPCR in brain tissue and NrCAM in LCLs in their respective group comparisons. In conclusion, our study highlights neuroinflammation, metabolism and synaptic signaling disturbances as common altered pathways in different AD and FTD forms. The use of LCLs might be appropriate for studying early immune system and inflammation, and some neural features in neurodegenerative dementias.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Encéfalo/patología , Proteína C9orf72/genética , Línea Celular , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Expresión Génica , Humanos , Inflamación/patología , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Mutación , Proteínas de Transporte Vesicular , Proteínas tau/genética
14.
Acta Neuropathol ; 144(5): 843-859, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35895141

RESUMEN

Galectin-3 (Gal-3) is a beta-galactosidase binding protein involved in microglial activation in the central nervous system (CNS). We previously demonstrated the crucial deleterious role of Gal-3 in microglial activation in Alzheimer's disease (AD). Under AD conditions, Gal-3 is primarily expressed by microglial cells clustered around Aß plaques in both human and mouse brain, and knocking out Gal-3 reduces AD pathology in AD-model mice. To further unravel the importance of Gal-3-associated inflammation in AD, we aimed to investigate the Gal-3 inflammatory response in the AD continuum. First, we measured Gal-3 levels in neocortical and hippocampal tissue from early-onset AD patients, including genetic and sporadic cases. We found that Gal-3 levels were significantly higher in both cortex and hippocampus in AD subjects. Immunohistochemistry revealed that Gal-3+ microglial cells were associated with amyloid plaques of a larger size and more irregular shape and with neurons containing tau-inclusions. We then analyzed the levels of Gal-3 in cerebrospinal fluid (CSF) from AD patients (n = 119) compared to control individuals (n = 36). CSF Gal-3 levels were elevated in AD patients compared to controls and more strongly correlated with tau (p-Tau181 and t-tau) and synaptic markers (GAP-43 and neurogranin) than with amyloid-ß. Lastly, principal component analysis (PCA) of AD biomarkers revealed that CSF Gal-3 clustered and associated with other CSF neuroinflammatory markers, including sTREM-2, GFAP, and YKL-40. This neuroinflammatory component was more highly expressed in the CSF from amyloid-ß positive (A+), CSF p-Tau181 positive (T+), and biomarker neurodegeneration positive/negative (N+/-) (A + T + N+/-) groups compared to the A + T-N- group. Overall, Gal-3 stands out as a key pathological biomarker of AD pathology that is measurable in CSF and, therefore, a potential target for disease-modifying therapies involving the neuroinflammatory response.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Biomarcadores/líquido cefalorraquídeo , Encéfalo/patología , Proteína 1 Similar a Quitinasa-3/metabolismo , Proteína GAP-43/metabolismo , Galectina 3 , Humanos , Ratones , Neurogranina , Placa Amiloide/patología , beta-Galactosidasa/metabolismo , Proteínas tau/metabolismo
15.
J Alzheimers Dis ; 87(4): 1659-1669, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35723108

RESUMEN

BACKGROUND: Early onset Alzheimer's disease (EOAD) represents a diagnostic challenge and is associated with a high diagnostic delay and misdiagnosis. OBJECTIVE: To describe clinical and pathological data from a pathologically confirmed EOAD cohort and evaluate evolving trends in clinical-pathological correlation accuracy. METHODS: Retrospective review of clinical and neuropathological data of pathologically confirmed EOAD patients (age at onset [AAO] < 60). Comparison between two periods: 1994- 2009 and 2010- 2018. RESULTS: Eighty brain donors were included. Mean AAO, age at death, and diagnostic delay was 55, 66, and 3 years, respectively. Twenty-nine percent had a nonamnestic presentation. Sixteen percent were given a non-AD initial clinical diagnosis (initial misdiagnosis) and 14% received a final misdiagnosis. Nonamnestic presentation patients received more misdiagnoses than amnestic presentation ones (39% versus 7% and 39% versus 3.5%, on initial and final misdiagnosis, respectively). When comparing both time periods, a trend towards a higher diagnostic accuracy in the 2010- 2018 period was observed, mainly on initial misdiagnosis in nonamnestic presentation patients (53% versus 13%, p = 0.069). Diagnostic delay was similar between both periods. Cerebral amyloid angiopathy (96%) and Lewy body co-pathology (55%) were very frequent, while limbic-predominant age-related TDP-43 encephalopathy pathologic changes were only present in 12.5%. CONCLUSION: In the last decade, there has been a trend towards improved diagnostic accuracy in EOAD, which might be explained by improved diagnostic criteria, increasing experience on EOAD and the beginning of the use of biomarkers, although diagnostic delay remains similar. Concomitant neuropathology was very frequent despite the relatively young age of brain donors.


Asunto(s)
Enfermedad de Alzheimer , Edad de Inicio , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Diagnóstico Tardío , Humanos , Cuerpos de Lewy/patología
16.
J Neurol ; 269(5): 2573-2583, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34665329

RESUMEN

BACKGROUND: MRI atrophy predicts cognitive status in AD. However, this relationship has not been investigated in early-onset AD (EOAD, < 65 years) patients with a biomarker-based diagnosis. METHODS: Forty eight EOAD (MMSE ≥ 15; A + T + N +) and forty two age-matched healthy controls (HC; A - T - N -) from a prospective cohort underwent full neuropsychological assessment, 3T-MRI scan and lumbar puncture at baseline. Participants repeated the cognitive assessment annually. We used linear mixed models to investigate whether baseline cortical thickness (CTh) or subcortical volume predicts two-year cognitive outcomes in the EOAD group. RESULTS: In EOAD, hemispheric CTh and ventricular volume at baseline were associated with global cognition, language and attentional/executive functioning 2 years later (p < 0.0028). Regional CTh was related to most cognitive outcomes (p < 0.0028), except verbal/visual memory subtests. Amygdalar volume was associated with letter fluency test (p < 0.0028). Hippocampal volume did not show significant associations. CONCLUSION: Baseline hemispheric/regional CTh, ventricular and amygdalar volume, but not the hippocampus, predict two-year cognitive outcomes in EOAD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Atrofia/patología , Cognición , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Hipocampo/patología , Humanos , Lenguaje , Imagen por Resonancia Magnética , Pruebas Neuropsicológicas , Estudios Prospectivos
17.
Brain ; 144(9): 2798-2811, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34687211

RESUMEN

The G4C2-repeat expansion in C9orf72 is the most common cause of frontotemporal dementia and of amyotrophic lateral sclerosis. The variability of age at onset and phenotypic presentations is a hallmark of C9orf72 disease. In this study, we aimed to identify modifying factors of disease onset in C9orf72 carriers using a family-based approach, in pairs of C9orf72 carrier relatives with concordant or discordant age at onset. Linkage and association analyses provided converging evidence for a locus on chromosome Xq27.3. The minor allele A of rs1009776 was associated with an earlier onset (P = 1 × 10-5). The association with onset of dementia was replicated in an independent cohort of unrelated C9orf72 patients (P = 0.009). The protective major allele delayed the onset of dementia from 5 to 13 years on average depending on the cohort considered. The same trend was observed in an independent cohort of C9orf72 patients with extreme deviation of the age at onset (P = 0.055). No association of rs1009776 was detected in GRN patients, suggesting that the effect of rs1009776 was restricted to the onset of dementia due to C9orf72. The minor allele A is associated with a higher SLITRK2 expression based on both expression quantitative trait loci (eQTL) databases and in-house expression studies performed on C9orf72 brain tissues. SLITRK2 encodes for a post-synaptic adhesion protein. We further show that synaptic vesicle glycoprotein 2 and synaptophysin, two synaptic vesicle proteins, were decreased in frontal cortex of C9orf72 patients carrying the minor allele. Upregulation of SLITRK2 might be associated with synaptic dysfunctions and drives adverse effects in C9orf72 patients that could be modulated in those carrying the protective allele. How the modulation of SLITRK2 expression affects synaptic functions and influences the disease onset of dementia in C9orf72 carriers will require further investigations. In summary, this study describes an original approach to detect modifier genes in rare diseases and reinforces rising links between C9orf72 and synaptic dysfunctions that might directly influence the occurrence of first symptoms.


Asunto(s)
Proteína C9orf72/genética , Degeneración Lobar Frontotemporal/diagnóstico , Degeneración Lobar Frontotemporal/genética , Genes Ligados a X/genética , Estudio de Asociación del Genoma Completo/métodos , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Degeneración Lobar Frontotemporal/epidemiología , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética
18.
Neuroimage Clin ; 32: 102804, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34474317

RESUMEN

There is evidence of longitudinal atrophy in posterior brain areas in early-onset Alzheimer's disease (EOAD; aged < 65 years), but no studies have been conducted in an EOAD cohort with fluid biomarkers characterization. We used 3T-MRI and Freesurfer 6.0 to investigate cortical and subcortical gray matter loss at two years in 12 EOAD patients (A + T + N + ) compared to 19 controls (A-T-N-) from the Hospital Clínic Barcelona cohort. We explored group differences in atrophy patterns and we correlated atrophy and baseline CSF-biomarkers levels in EOAD. We replicated the correlation analyses in 14 EOAD (A + T + N + ) and 55 late-onset AD (LOAD; aged ≥ 75 years; A + T + N + ) participants from the Alzheimer's disease Neuroimaging Initiative. We found that EOAD longitudinal atrophy spread with a posterior-to-anterior gradient and beyond hippocampus/amygdala. In EOAD, higher initial CSF NfL levels correlated with higher ventricular volumes at baseline. On the other hand, higher initial CSF Aß42 levels (within pathological range) predicted higher rates of cortical loss in EOAD. In EOAD and LOAD subjects, higher CSF t-tau values at baseline predicted higher rates of subcortical atrophy. CSF p-tau did not show any significant correlation. In conclusion, posterior cortices, hippocampus and amygdala capture EOAD atrophy from early stages. CSF Aß42 might predict cortical thinning and t-tau/NfL subcortical atrophy.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Atrofia/patología , Biomarcadores , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Humanos , Imagen por Resonancia Magnética , Proteínas tau
19.
Nat Commun ; 12(1): 3417, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099642

RESUMEN

Genetic discoveries of Alzheimer's disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer's disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer's disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/genética , Herencia Multifactorial , Edad de Inicio , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Apolipoproteínas E/genética , Estudios de Casos y Controles , Estudios de Cohortes , Conjuntos de Datos como Asunto , Femenino , Estudios de Seguimiento , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Medición de Riesgo/métodos , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA