Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
JCI Insight ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954474

RESUMEN

Beside suppressing immune responses, regulatory T cells (Tregs) maintain tissue homeostasis and control systemic metabolism. Whether iron is involved in Treg-mediated tolerance is completely unknown. Here, we showed that the transferrin receptor CD71 was upregulated on activated Tregs infiltrating human liver cancer. Mice with a Treg-restricted CD71 deficiency spontaneously developed a scurfy-like disease, caused by impaired perinatal Treg expansion. CD71-null Tregs displayed decreased proliferation and tissue-Treg signature loss. In perinatal life, CD71 deficiency in Tregs triggered hepatic iron overload response, characterized by increased hepcidin transcription and iron accumulation in macrophages. Lower bacterial diversity, and reduction of beneficial species, were detected in the fecal microbiota of CD71 conditional knock-out neonates. Our findings indicate that CD71-mediated iron absorption is required for Treg perinatal expansion and related to systemic iron homeostasis and bacterial gut colonization. Therefore, we hypothesize that Tregs establish nutritional tolerance through competition for iron during bacterial colonization after birth.

2.
Biol Direct ; 17(1): 8, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484629

RESUMEN

Migrasomes, released by migrating cells, belong to the heterogeneous world of extracellular vesicles (EVs). However, they can be distinguished from all other members of EVs by their size, biorigin and protein cargo. As far as we know, they can play important roles in various communication processes, by mediating the release of signals, such as mRNAs, proteins or damaged mitochondria. To extend and better understand the functional roles and importance of migrasomes, it is first essential to well understand the basic molecular mechanisms behind their formation and function. Herein, we endeavor to provide a brief and up-to-date description of migrasome biogenesis, release, characterization, biological properties and functional activities in cell-to-cell communication, and we will discuss and propose putative new functions for these vesicles.


Asunto(s)
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Orgánulos , Proteínas/metabolismo
3.
Mol Oncol ; 16(1): 188-205, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34535949

RESUMEN

Programmed cell death-1 (PD-1) signaling downregulates the T-cell response, promoting an exhausted state in tumor-infiltrating T cells, through mostly unveiled molecular mechanisms. Dynamin-related protein-1 (Drp1)-dependent mitochondrial fission plays a crucial role in sustaining T-cell motility, proliferation, survival, and glycolytic engagement. Interestingly, such processes are exactly those inhibited by PD-1 in tumor-infiltrating T cells. Here, we show that PD-1pos CD8+ T cells infiltrating an MC38 (murine adenocarcinoma)-derived murine tumor mass have a downregulated Drp1 activity and more elongated mitochondria compared with PD-1neg counterparts. Also, PD-1pos lymphocytic elements infiltrating a human colon cancer rarely express active Drp1. Mechanistically, PD-1 signaling directly prevents mitochondrial fragmentation following T-cell stimulation by downregulating Drp1 phosphorylation on Ser616, via regulation of the ERK1/2 and mTOR pathways. In addition, downregulation of Drp1 activity in tumor-infiltrating PD-1pos CD8+ T cells seems to be a mechanism exploited by PD-1 signaling to reduce motility and proliferation of these cells. Overall, our data indicate that the modulation of Drp1 activity in tumor-infiltrating T cells may become a valuable target to ameliorate the anticancer immune response in future immunotherapy approaches.


Asunto(s)
Linfocitos T CD8-positivos , Dinaminas/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Animales , Linfocitos T CD8-positivos/metabolismo , Dinaminas/metabolismo , Humanos , Ratones , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Receptor de Muerte Celular Programada 1/metabolismo
5.
Cell Death Differ ; 27(10): 2749-2767, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32346136

RESUMEN

The Activation-Induced Cell Death (AICD) is a stimulation-dependent form of apoptosis used by the organism to shutdown T-cell response once the source of inflammation has been eliminated, while allowing the generation of immune memory. AICD is thought to progress through the activation of the extrinsic Fas/FasL pathway of cell death, leading to cytochrome-C release through caspase-8 and Bid activation. We recently described that, early upon AICD induction, mitochondria undergo structural alterations, which are required to promote cytochrome-C release and execute cell death. Here, we found that such alterations do not depend on the Fas/FasL pathway, which is instead only lately activated to amplify the cell death cascade. Instead, such alterations are primarily dependent on the MAPK proteins JNK1 and ERK1/2, which, in turn, regulate the activity of the pro-fission protein Drp1 and the pro-apoptotic factor Bim. The latter regulates cristae disassembly and cooperate with Drp1 to mediate the Mitochondrial Outer Membrane Permeabilization (MOMP), leading to cytochrome-C release. Interestingly, we found that Bim is also downregulated in T-cell Acute Lymphoblastic Leukemia (T-ALL) cells, this alteration favouring their escape from AICD-mediated control.


Asunto(s)
Dinaminas/metabolismo , Mitocondrias/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras , Linfocitos T/inmunología , Animales , Muerte Celular , Línea Celular Tumoral , Femenino , Humanos , Activación de Linfocitos , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Endogámicos C57BL , Membranas Mitocondriales/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Linfocitos T/citología
6.
Neurobiol Dis ; 138: 104792, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32027933

RESUMEN

Activation of the integrated stress response (ISR), alterations in nucleo-cytoplasmic (N/C) transport and changes in alternative splicing regulation are all common traits of the pathogenesis of Amyotrophic Lateral Sclerosis (ALS). However, whether these processes act independently from each other, or are part of a coordinated mechanism of gene expression regulation that is affected in pathogenic conditions, is still rather undefined. To answer these questions, in this work we set out to characterise the functional connections existing between ISR activation and nucleo-cytosol trafficking and nuclear localization of spliceosomal U-rich small nuclear ribonucleoproteins (UsnRNPs), the core constituents of the spliceosome, and to study how ALS-linked mutant proteins affect this interplay. Activation of the ISR induces a profound reorganization of nuclear Gems and Cajal bodies, the membrane-less particles that assist UsnRNP maturation and storage. This effect requires the cytoplasmic assembly of SGs and is associated to the disturbance of the nuclear import of UsnRNPs by the snurportin-1/importin-ß1 system. Notably, these effects are reversed by both inhibiting the ISR or upregulating importin-ß1. This indicates that SGs are major determinants of Cajal bodies assembly and that the modulation of N/C trafficking of UsnRNPs might control alternative splicing in response to stress. Importantly, the dismantling of nuclear Gems and Cajal bodies by ALS-linked mutant FUS or C9orf72-derived dipeptide repeat proteins is halted by overexpression of importin-ß1, but not by inhibition of the ISR. This suggests that changes in the nuclear localization of the UsnRNP complexes induced by mutant ALS proteins are uncoupled from ISR activation, and that defects in the N/C trafficking of UsnRNPs might play a role in ALS pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas Mutantes/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Empalme Alternativo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proteína C9orf72/genética , Núcleo Celular/genética , Citoplasma/genética , Proteínas de Unión al ADN/genética , Humanos , Ratones , Neuronas Motoras/patología , Mutación , Transporte de Proteínas/genética , Proteína FUS de Unión a ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA