Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Commun Biol ; 7(1): 1152, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304734

RESUMEN

In human walking, the left and right legs move alternately, half a stride out of phase with each other. Although various parameters, such as stride frequency and length, vary with walking speed, the antiphase relationship remains unchanged. In contrast, during walking in left-right asymmetric situations, the relative phase shifts from the antiphase condition to compensate for the asymmetry. Interlimb coordination is important for adaptive walking and we expect that interlimb coordination is strictly controlled during walking. However, the control mechanism remains unclear. In the present study, we derived a quantity that models the control of interlimb coordination during walking using two coupled oscillators based on the phase reduction theory and Bayesian inference method. The results were not what we expected. Specifically, we found that the relative phase is not actively controlled until the deviation from the antiphase condition exceeds a certain threshold. In other words, the control of interlimb coordination has a dead zone like that in the case of the steering wheel of an automobile. It is conjectured that such forgoing of control enhances energy efficiency and maneuverability. Our discovery of the dead zone in the control of interlimb coordination provides useful insight for understanding gait control in humans.


Asunto(s)
Marcha , Caminata , Humanos , Caminata/fisiología , Marcha/fisiología , Teorema de Bayes , Fenómenos Biomecánicos , Modelos Biológicos , Pierna/fisiología
2.
Sci Rep ; 13(1): 14770, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679376

RESUMEN

Excessive hip flexion torque to prioritize leg swings in the elderly is likely to be a factor that reduces their propulsive force and gait stability, but the mechanism is not clear. To understand the mechanism, we investigated how propulsive force, hip flexion torque, and margin of stability (MoS) change when only the hip spring stiffness is increased without changing the walking speed in the simple walking model, and verified whether the relationship holds in human walking. The results showed that at walking speeds between 0.50 and 1.75 m/s, increasing hip spring stiffness increased hip flexion torque and decreased the propulsive force and MoS in both the model and human walking. Furthermore, it was found that the increase in hip flexion torque was explained by the increase in spring stiffness, and the decreases in the propulsive force and MoS were explained by the increase in step frequency associated with the increase in spring stiffness. Therefore, the increase in hip flexion torque likely decreased the propulsive force and MoS, and this mechanism was explained by the intervening hip spring stiffness. Our findings may help in the control design of walking assistance devices, and in improving our understanding of elderly walking strategies.


Asunto(s)
Marcha , Caminata , Anciano , Humanos , Torque , Velocidad al Caminar , Terapia por Ejercicio
3.
Soft Robot ; 10(5): 1028-1040, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37231619

RESUMEN

Legged robots have remarkable terrestrial mobility, but are susceptible to falling and leg malfunction during locomotion. The use of a large number of legs, as in centipedes, can overcome these problems, but it makes the body long and leads to many legs being constrained to contact with the ground to support the long body, which impedes maneuverability. A mechanism for maneuverable locomotion using a large number legs is thus desirable. However, controlling a long body with a large number of legs requires huge computational and energy costs. Inspired by agile locomotion in biological systems, this study proposes a control strategy for maneuverable and efficient locomotion of a myriapod robot based on dynamic instability. Specifically, our previous study made the body axis of a 12-legged robot flexible and showed that changing the body-axis flexibility produces pitchfork bifurcation. The bifurcation not only induces the dynamic instability of a straight walk but also a transition to a curved walk, whose curvature is controllable by the body-axis flexibility. This study incorporated a variable stiffness mechanism into the body axis and developed a simple control strategy based on the bifurcation characteristics. With this strategy, maneuverable and autonomous locomotion was achieved, as demonstrated by multiple robot experiments. Our approach does not directly control the movement of the body axis; instead, it controls body-axis flexibility, which significantly reduces computational and energy costs. This study provides a new design principle for maneuverable and efficient locomotion of myriapod robots.

4.
Front Neural Circuits ; 16: 836121, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814485

RESUMEN

Stride intervals in human walking fluctuate from one stride to the next, exhibiting statistical persistence. This statistical property is changed by aging, neural disorders, and experimental interventions. It has been hypothesized that the central nervous system is responsible for the statistical persistence. Human walking is a complex phenomenon generated through the dynamic interactions between the central nervous system and the biomechanical system. It has also been hypothesized that the statistical persistence emerges through the dynamic interactions during walking. In particular, a previous study integrated a biomechanical model composed of seven rigid links with a central pattern generator (CPG) model, which incorporated a phase resetting mechanism as sensory feedback as well as feedforward, trajectory tracking, and intermittent feedback controllers, and suggested that phase resetting contributes to the statistical persistence in stride intervals. However, the essential mechanisms remain largely unclear due to the complexity of the neuromechanical model. In this study, we reproduced the statistical persistence in stride intervals using a simplified neuromechanical model composed of a simple compass-type biomechanical model and a simple CPG model that incorporates only phase resetting and a feedforward controller. A lack of phase resetting induced a loss of statistical persistence, as observed for aging, neural disorders, and experimental interventions. These mechanisms were clarified based on the phase response characteristics of our model. These findings provide useful insight into the mechanisms responsible for the statistical persistence of stride intervals in human walking.


Asunto(s)
Marcha , Caminata , Marcha/fisiología , Humanos , Caminata/fisiología
5.
Front Bioeng Biotechnol ; 10: 807777, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721869

RESUMEN

Quadrupedal mammals have fore-aft asymmetry in their body structure, which affects their walking and running dynamics. However, the effects of asymmetry, particularly in the transverse plane, remain largely unclear. In this study, we examined the effects of fore-aft asymmetry on quadrupedal trotting in the transverse plane from a dynamic viewpoint using a simple model, which consists of two rigid bodies connected by a torsional joint with a torsional spring and four spring legs. Specifically, we introduced fore-aft asymmetry into the model by changing the physical parameters between the fore and hind parts of the model based on dogs, which have a short neck, and horses, which have a long neck. We numerically searched the periodic solutions for trotting and investigated the obtained solutions and their stability. We found that three types of periodic solutions with different foot patterns appeared that depended on the asymmetry. Additionally, the asymmetry improved gait stability. Our findings improve our understanding of gait dynamics in quadrupeds with fore-aft asymmetry.

6.
Front Bioeng Biotechnol ; 10: 825638, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35497345

RESUMEN

Cheetahs are the fastest land animal. Their galloping shows three characteristics: small vertical movement of their center of mass, small whole-body pitching movement, and large spine bending movement. We hypothesize that these characteristics lead to enhanced gait performance in cheetahs, including higher gait speed. In this study, we used a simple model with a spine joint and torsional spring, which emulate the body flexibility, to verify our hypothesis from a dynamic perspective. Specifically, we numerically searched periodic solutions and evaluated what extent each solution shows the three characteristics. We then evaluated the gait performance and found that the solutions with the characteristics achieve high performances. This result supports our hypothesis. Furthermore, we revealed the mechanism for the high performances through the dynamics of the spine movement. These findings extend the current understanding of the dynamic mechanisms underlying high-speed locomotion in cheetahs.

7.
Front Bioeng Biotechnol ; 10: 825149, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464733

RESUMEN

Mammalian locomotion is generated by central pattern generators (CPGs) in the spinal cord, which produce alternating flexor and extensor activities controlling the locomotor movements of each limb. Afferent feedback signals from the limbs are integrated by the CPGs to provide adaptive control of locomotion. Responses of CPG-generated neural activity to afferent feedback stimulation have been previously studied during fictive locomotion in immobilized cats. Yet, locomotion in awake, behaving animals involves dynamic interactions between central neuronal circuits, afferent feedback, musculoskeletal system, and environment. To study these complex interactions, we developed a model simulating interactions between a half-center CPG and the musculoskeletal system of a cat hindlimb. Then, we analyzed the role of afferent feedback in the locomotor adaptation from a dynamic viewpoint using the methods of dynamical systems theory and nullcline analysis. Our model reproduced limb movements during regular cat walking as well as adaptive changes of these movements when the foot steps into a hole. The model generates important insights into the mechanism for adaptive locomotion resulting from dynamic interactions between the CPG-based neural circuits, the musculoskeletal system, and the environment.

8.
Front Bioeng Biotechnol ; 10: 825157, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35295643

RESUMEN

Horses use the transverse gallop in high-speed running. However, different animals use different gaits, and the gait preference of horses remains largely unclear. Horses have fore-aft asymmetry in their body structure and their center of mass (CoM) is anteriorly located far from the center of the body. Since such a CoM offset affects the running dynamics, we hypothesize that the CoM offset of horses is important in gait selection. In order to verify our hypothesis and clarify the gait selection mechanisms by horses from a dynamic viewpoint, we developed a simple model with CoM offset and investigated its effects on running. Specifically, we numerically obtained periodic solutions and classified these solutions into six types of gaits, including the transverse gallop, based on the footfall pattern. Our results show that the transverse gallop is optimal when the CoM offset is located at the position estimated in horses. Our findings provide useful insight into the gait selection mechanisms in high-speed running of horses.

9.
Sci Rep ; 11(1): 20362, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34645901

RESUMEN

Impairment of inferior olivary neurons (IONs) affects whole-body movements and results in abnormal gait and posture. Because IONs are activated by unpredicted motion rather than regular body movements, the postural dysfunction caused by ION lesions is expected to involve factors other than simple loss of feedback control. In this study, we measured the postural movements of rats with pharmacological ION lesions (IO rats) trained to stand on their hindlimbs. The coordination of body segments as well as the distribution and frequency characteristics of center of mass (COM) motion were analyzed. We determined that the lesion altered the peak properties of the power spectrum density of the COM, whereas changes in coordination and COM distribution were minor. To investigate how the observed properties reflected changes in the control system, we constructed a mathematical model of the standing rats and quantitatively identified the control system. We found an increase in linear proportional control and a decrease in differential and nonlinear control in IO rats compared with intact rats. The dystonia-like changes in body stiffness explain the nature of the linear proportional and differential control, and a disorder in the internal model is one possible cause of the decrease in nonlinear control.


Asunto(s)
Movimiento , Núcleo Olivar/fisiopatología , Equilibrio Postural , Animales , Masculino , Núcleo Olivar/patología , Ratas , Ratas Wistar
10.
Front Neural Circuits ; 15: 706064, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34552472

RESUMEN

Multi-legged animals show several types of ipsilateral interlimb coordination. Millipedes use a direct-wave gait, in which the swing leg movements propagate from posterior to anterior. In contrast, centipedes use a retrograde-wave gait, in which the swing leg movements propagate from anterior to posterior. Interestingly, when millipedes walk in a specific way, both direct and retrograde waves of the swing leg movements appear with the waves' source, which we call the source-wave gait. However, the gait generation mechanism is still unclear because of the complex nature of the interaction between neural control and dynamic body systems. The present study used a simple model to understand the mechanism better, primarily how local sensory feedback affects multi-legged locomotion. The model comprises a multi-legged body and its locomotion control system using biologically inspired oscillators with local sensory feedback, phase resetting. Each oscillator controls each leg independently. Our simulation produced the above three types of animal gaits. These gaits are not predesigned but emerge through the interaction between the neural control and dynamic body systems through sensory feedback (embodied sensorimotor interaction) in a decentralized manner. The analytical description of these gaits' solution and stability clarifies the embodied sensorimotor interaction's functional roles in the interlimb coordination.


Asunto(s)
Marcha , Locomoción , Animales , Simulación por Computador , Retroalimentación Sensorial
11.
Front Robot AI ; 8: 697612, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34422913

RESUMEN

Interlimb coordination plays an important role in adaptive locomotion of humans and animals. This has been investigated using a split-belt treadmill, which imposes different speeds on the two sides of the body. Two types of adaptation have been identified, namely fast and slow adaptations. Fast adaptation induces asymmetric interlimb coordination soon after a change of the treadmill speed condition from same speed for both belts to different speeds. In contrast, slow adaptation slowly reduces the asymmetry after fast adaptation. It has been suggested that these adaptations are primarily achieved by the spinal reflex and cerebellar learning. However, these adaptation mechanisms remain unclear due to the complicated dynamics of locomotion. In our previous work, we developed a locomotion control system for a biped robot based on the spinal reflex and cerebellar learning. We reproduced the fast and slow adaptations observed in humans during split-belt treadmill walking of the biped robot and clarified the adaptation mechanisms from a dynamic viewpoint by focusing on the changes in the relative positions between the center of mass and foot stance induced by reflex and learning. In this study, we modified the control system for application to a quadruped robot. We demonstrate that even though the basic gait pattern of our robot is different from that of general quadrupeds (due to limitations of the robot experiment), fast and slow adaptations that are similar to those of quadrupeds appear during split-belt treadmill walking of the quadruped robot. Furthermore, we clarify these adaptation mechanisms from a dynamic viewpoint, as done in our previous work. These results will increase the understanding of how fast and slow adaptations are generated in quadrupedal locomotion on a split-belt treadmill through body dynamics and sensorimotor integration via the spinal reflex and cerebellar learning and help the development of control strategies for adaptive locomotion of quadruped robots.

12.
Sci Rep ; 11(1): 9631, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953253

RESUMEN

Cheetahs use a galloping gait in their fastest speed range. It has been reported that cheetahs achieve high-speed galloping by performing two types of flight through spine movement (gathered and extended). However, the dynamic factors that enable cheetahs to incorporate two types of flight while galloping remain unclear. To elucidate this issue from a dynamical viewpoint, we developed a simple analytical model. We derived possible periodic solutions with two different flight types (like cheetah galloping), and others with only one flight type (unlike cheetah galloping). The periodic solutions provided two criteria to determine the flight type, related to the position and magnitude of ground reaction forces entering the body. The periodic solutions and criteria were verified using measured cheetah data, and provided a dynamical mechanism by which galloping with two flight types enhances speed. These findings extend current understanding of the dynamical mechanisms underlying high-speed locomotion in cheetahs.


Asunto(s)
Acinonyx/fisiología , Marcha/fisiología , Modelos Biológicos , Carrera/fisiología , Columna Vertebral/fisiología , Animales , Fenómenos Biomecánicos/fisiología
13.
Bioinspir Biomim ; 15(5): 055002, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32396880

RESUMEN

Passive dynamic walking is a model that walks down a shallow slope without any control or input. This model has been widely used to investigate how humans walk with low energy consumption and provides design principles for energy-efficient biped robots. However, the basin of attraction is very small and thin and has a fractal-like complicated shape, which makes producing stable walking difficult. In our previous study, we used the simplest walking model and investigated the fractal-like basin of attraction based on dynamical systems theory by focusing on the hybrid dynamics of the model composed of the continuous dynamics with saddle hyperbolicity and the discontinuous dynamics caused by the impact upon foot contact. We clarified that the fractal-like basin of attraction is generated through iterative stretching and bending deformations of the domain of the Poincaré map by sequential inverse images. However, whether the fractal-like basin of attraction is actually fractal, i.e., whether infinitely many self-similar patterns are embedded in the basin of attraction, is dependent on the slope angle, and the mechanism remains unclear. In the present study, we improved our previous analysis in order to clarify this mechanism. In particular, we newly focused on the range of the Poincaré map and specified the regions that are stretched and bent by the sequential inverse images of the Poincaré map. Through the analysis of the specified regions, we clarified the conditions and mechanism required for the basin of attraction to be fractal.


Asunto(s)
Fractales , Caminata/psicología , Fenómenos Biomecánicos , Metabolismo Energético/fisiología , Pie/fisiología , Marcha , Articulación de la Cadera/fisiología , Humanos , Pierna , Modelos Biológicos
14.
Bioinspir Biomim ; 15(5): 055001, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32454464

RESUMEN

Quadruped animals use not only their legs but also their trunks during walking and running. Although many previous studies have investigated the flexion, extension, and lateral bending of the trunk, few studies have investigated the body torsion, and its dynamic effects on locomotion thus remain unclear. In this study, we investigated the effects of body torsion on gait stability during trotting and pacing. Specifically, we constructed a simple model consisting of two rigid bodies connected via a torsional joint that has a torsional spring and four leg springs. We then derived periodic solutions for trotting and pacing and evaluated the stabilities of these motion types using a Poincaré map. We found that the moments of inertia of the bodies and the spring constant ratio of the torsional spring and the leg springs determine the stability of these periodic solutions. We then determined the stability conditions for these parameters and elucidated the relevant mechanisms. In addition, we clarified the importance of the body torsion to the gait stability by comparison with a rigid model. Finally, we analyzed the biological relevance of our findings and provided a design principle for development of quadruped robots.


Asunto(s)
Marcha/fisiología , Locomoción/fisiología , Modelos Biológicos , Animales , Fenómenos Biomecánicos , Robótica , Carrera/fisiología , Caminata/fisiología
15.
Front Neurosci ; 14: 17, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32116492

RESUMEN

Humans walk adaptively in varying environments by manipulating their complicated and redundant musculoskeletal system. Although the central pattern generators in the spinal cord are largely responsible for adaptive walking through sensory-motor coordination, it remains unclear what neural mechanisms determine walking adaptability. It has been reported that locomotor rhythm and phase are regulated by the production of phase shift and rhythm resetting (phase resetting) for periodic motor commands in response to sensory feedback and perturbation. While the phase resetting has been suggested to make a large contribution to adaptive walking, it has only been investigated based on fictive locomotion in decerebrate cats, and thus it remains unclear if human motor control has such a rhythm regulation mechanism during walking. In our previous work, we incorporated a phase resetting mechanism into a motor control model and demonstrated that it improves the stability and robustness of walking through forward dynamic simulations of a human musculoskeletal model. However, this did not necessarily verify that phase resetting plays a role in human motor control. In our other previous work, we used kinematic measurements of human walking to identify the phase response curve (PRC), which explains phase-dependent responses of a limit cycle oscillator to a perturbation. This revealed how human walking rhythm is regulated by perturbations. In this study, we integrated these two approaches using a physical model and identification of the PRC to examine the hypothesis that phase resetting plays a role in the control of walking rhythm in humans. More specifically, we calculated the PRC using our neuromusculoskeletal model in the same way as our previous human experiment. In particular, we compared the PRCs calculated from two different models with and without phase resetting while referring to the PRC for humans. As a result, although the PRC for the model without phase resetting did not show any characteristic shape, the PRC for the model with phase resetting showed a characteristic phase-dependent shape with trends similar to those of the PRC for humans. These results support our hypothesis and will improve our understanding of adaptive rhythm control in human walking.

16.
Front Neurosci ; 13: 1288, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31849596

RESUMEN

Central pattern generators (CPGs) in the spinal cord generate rhythmic neural activity and control locomotion in vertebrates. These CPGs operate under the control of sensory feedback that affects the generated locomotor pattern and adapt it to the animal's biomechanics and environment. Studies of the effects of afferent stimulation on fictive locomotion in immobilized cats have shown that brief stimulation of peripheral nerves can reset the ongoing locomotor rhythm. Depending on the phase of stimulation and the stimulated nerve, the applied stimulation can either shorten or prolong the current locomotor phase and the locomotor cycle. Here, we used a mathematical model of a half-center CPG to investigate the phase-dependent effects of brief stimulation applied to CPG on the CPG-generated locomotor oscillations. The CPG in the model consisted of two half-centers mutually inhibiting each other. The rhythmic activity in each half-center was based on a slowly inactivating, persistent sodium current. Brief stimulation was applied to CPG half-centers in different phases of the locomotor cycle to produce phase-dependent changes in CPG activity. The model reproduced several results from experiments on the effect of afferent stimulation of fictive locomotion in cats. The mechanisms of locomotor rhythm resetting under different conditions were analyzed using dynamic systems theory methods.

17.
Front Comput Neurosci ; 13: 63, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31616271

RESUMEN

Humans walk, run, and change their speed in accordance with circumstances. These gaits are rhythmic motions generated by multi-articulated movements, which have specific spatiotemporal patterns. The kinematic characteristics depend on the gait and speed. In this study, we focused on the kinematic coordination of locomotor behavior to clarify the underlying mechanism for the effect of speed on the spatiotemporal kinematic patterns for each gait. In particular, we used seven elevation angles for the whole-body motion and separated the measured data into different phases depending on the foot-contact condition, that is, single-stance phase, double-stance phase, and flight phase, which have different physical constraints during locomotion. We extracted the spatiotemporal kinematic coordination patterns with singular value decomposition and investigated the effect of speed on the coordination patterns. Our results showed that most of the whole-body motion could be explained by only two sets of temporal and spatial coordination patterns in each phase. Furthermore, the temporal coordination patterns were invariant for different speeds, while the spatial coordination patterns varied. These findings will improve our understanding of human adaptation mechanisms to tune locomotor behavior for changing speed.

18.
J Neurophysiol ; 122(1): 398-412, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31116630

RESUMEN

Several qualitative features distinguish bipedal from quadrupedal locomotion in mammals. In this study we show quantitative differences between quadrupedal and bipedal gait in the Japanese monkey in terms of gait patterns, trunk/hindlimb kinematics, and electromyographic (EMG) activity, obtained from 3 macaques during treadmill walking. We predicted that as a consequence of an almost upright body axis, bipedal gait would show properties consistent with temporal and spatial optimization countering higher trunk/hindlimb loads and a less stable center of mass (CoM). A comparatively larger step width, an ~9% longer duty cycle, and ~20% increased relative duration of the double-support phase were all in line with such a strategy. Bipedal joint kinematics showed the strongest differences in proximal, and least in distal, hindlimb joint excursions compared with quadrupedal gait. Hindlimb joint coordination (cyclograms) revealed more periods of single-joint rotations during bipedal gait and predominance of proximal joints during single support. The CoM described a symmetrical, quasi-sinusoidal left/right path during bipedal gait, with an alternating shift toward the weight-supporting limb during stance. Trunk/hindlimb EMG activity was nonuniformally increased during bipedal gait, most prominently in proximal antigravity muscles during stance (up to 10-fold). Non-antigravity hindlimb EMG showed altered temporal profiles during liftoff or touchdown. Muscle coactivation was more, but muscle synergies less, frequent during bipedal gait. Together, these results show that behavioral and EMG properties of bipedal vs. quadrupedal gait are quantitatively distinct and suggest that the neural control of bipedal primate locomotion underwent specific adaptations to generate these particular behavioral features to counteract increased load and instability. NEW & NOTEWORTHY Bipedal locomotion imposes particular biomechanical constraints on motor control. In a within-species comparative study, we investigated joint kinematics and electromyographic characteristics of bipedal vs. quadrupedal treadmill locomotion in Japanese macaques. Because these features represent (to a large extent) emergent properties of the underlying neural control, they provide a comparative, behavioral, and neurophysiological framework for understanding the neural system dedicated to bipedal locomotion in this nonhuman primate, which constitutes a critical animal model for human bipedalism.


Asunto(s)
Extremidades/fisiología , Marcha , Contracción Muscular , Equilibrio Postural , Animales , Fenómenos Biomecánicos , Extremidades/inervación , Femenino , Macaca fuscata , Masculino , Músculo Esquelético/inervación , Músculo Esquelético/fisiología
19.
Sci Rep ; 9(1): 369, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30674970

RESUMEN

Humans walk and run, as well as change their gait speed, through the control of their complicated and redundant musculoskeletal system. These gaits exhibit different locomotor behaviors, such as a double-stance phase in walking and flight phase in running. The complex and redundant nature of the musculoskeletal system and the wide variation in locomotion characteristics lead us to imagine that the motor control strategies for these gaits, which remain unclear, are extremely complex and differ from one another. It has been previously proposed that muscle activations may be generated by linearly combining a small set of basic pulses produced by central pattern generators (muscle synergy hypothesis). This control scheme is simple and thought to be shared between walking and running at different speeds. Demonstrating that this control scheme can generate walking and running and change the speed is critical, as bipedal locomotion is dynamically challenging. Here, we provide such a demonstration by using a motor control model with 69 parameters developed based on the muscle synergy hypothesis. Specifically, we show that it produces both walking and running of a human musculoskeletal model by changing only seven key motor control parameters. Furthermore, we show that the model can walk and run at different speeds by changing only the same seven parameters based on the desired speed. These findings will improve our understanding of human motor control in locomotion and provide guiding principles for the control design of wearable exoskeletons and prostheses.


Asunto(s)
Modelos Biológicos , Músculo Esquelético/fisiología , Fenómenos Fisiológicos Musculoesqueléticos , Fenómenos Fisiológicos del Sistema Nervioso , Carrera/psicología , Caminata/psicología , Algoritmos , Fenómenos Biomecánicos , Marcha , Humanos , Locomoción , Actividad Motora
20.
Front Neurosci ; 13: 1337, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32009870

RESUMEN

Changing gait is crucial for adaptive and smooth animal locomotion. Although it remains unclear what makes animals decide on a specific gait, energy efficiency is an important factor. It has been reported that the relationship of oxygen consumption with speed is U-shaped for each horse gait and that different gaits have different speeds at which oxygen consumption is minimized. This allows the horse to produce energy-efficient locomotion in a wide speed range by changing gait. However, the underlying mechanisms causing oxygen consumption to be U-shaped and the speeds for the minimum consumption to be different between different gaits are unclear. In the present study, we used a neuromusculoskeletal model of the rat to examine the mechanism from a dynamic viewpoint. Specifically, we constructed the musculoskeletal part of the model based on empirical anatomical data on rats and the motor control model based on the physiological concepts of the spinal central pattern generator and muscle synergy. We also incorporated the posture and speed regulation models at the levels of the brainstem and cerebellum. Our model achieved walking through forward dynamic simulation, and the simulated joint kinematics and muscle activities were compared with animal data. Our model also achieved trotting by changing only the phase difference of the muscle-synergy-based motor commands between the forelimb and hindlimb. Furthermore, the speed of each gait varied by changing only the extension phase duration and amplitude of the muscle synergy-based motor commands and the reference values for the regulation models. The relationship between cost of transport (CoT) and speed was U-shaped for both the generated walking and trotting, and the speeds for the minimum CoT were different for the two gaits, as observed in the oxygen consumption of horses. We found that the resonance property and the posture and speed regulations contributed to the CoT shape and difference in speeds for the minimum CoT. We further discussed the energy efficiency of gait based on the simulation results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA