Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(36): 24068-24077, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39248005

RESUMEN

The electrochemical reduction (ECR) of CO2 to CO by nickel-N4-Schiff base complexes as catalysts was investigated using density functional theory (DFT). Three nickel complexes, 1-Ni, 2-Ni, and [2-Ni]Me were considered. Two CO2 reduction pathways, i.e., external and internal proton transfer, were proposed and their reaction energy profiles were computed. The external proton transfer pathway which includes three steps has no transition state. The reaction energies for all steps are exothermic and the reaction catalyzed by 1-Ni has the lowest overall reaction energy (-5.72 eV) followed by those by 2-Ni (-5.56 eV) and [2-Ni]Me (-5.54 eV). The internal proton transfer pathway is composed of four steps. The internal proton transfer step (carboxylic formation) includes a transition state. The CO2 reduction by [2-Ni]Me could not proceed via this mechanism, since [2-Ni]Me does not have an NH group in the ligand and 1-Ni has a lower activation energy (0.83 eV), which is in agreement with the experiment. The charge of the pre-adsorption nickel complex seems to be related to the activity of the catalysts. The catalyst with a less positive nickel charge is more active.

2.
J Mol Graph Model ; 125: 108586, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37567049

RESUMEN

The reaction mechanism of ethylene (ET) polymerization catalyzed by the phenoxy-imine (FI) ligands using DFT calculations was studied. Among five possible isomers, isomer A which has an octahedral geometry and a (cis-N/trans-O/cis-Cl) arrangement is the most stable pre-reaction Ti-FI dichloride complex. The isomer A can be activated by MAO to form the active catalyst and the active form was used for the study of the mechanism for Ti-FI. The second ethylene insertion was found to be the rate-determining step of the catalyzed ethylene polymerization. To examine the effect of group IVB transition metals (M = Ti, Zr, Hf) substitutions, calculated activation energies at the rate-determining step (EaRDS) were compared, where values of EaRDS of Zr < Hf < Ti agree with experiments. Moreover, we examined the effect of substitution on (O, X) ligands of the Ti-phenoxy-imine (Ti-1) based catalyst. The results revealed that EaRDS of (O, N) > (O, O) > (O, P) > O, S). Hence, the (O, S) ligand has the highest potential to improve the catalytic activity of the Ti-FI catalyst. We also found the activation energy to be related to the Ti-X distance. In addition, a novel Ni-based FI catalyst was investigated. The results indicated that the nickel (II) complex based on the phenoxy-imine (O, N) ligand in the square-planar geometry is more active than in the octahedral geometry. This work provides fundamental insights into the reaction mechanism of M - FI catalysts which can be used for the design and development of M - FI catalysts for ET polymerization.


Asunto(s)
Iminas , Compuestos Organometálicos , Polimerizacion , Ligandos , Etilenos , Metales , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA