Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Materials (Basel) ; 17(2)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38255503

RESUMEN

The radiolabeled iron oxide nanoparticles constitute an attractive choice to be used as dual-modality contrast agents (DMCAs) in nuclear medical diagnosis, due to their ability to combine the benefits of two imaging modalities, for instance single photon emission computed tomography (SPECT) with magnetic resonance imaging (MRI). Before the use of any DMCA, the investigation of its plasma extra- and on/intra cellular distribution in peripheral human blood is of paramount importance. Here, we focus on the in vitro investigation of the distribution of 99mTc-DPD-Fe3O4 DMCA in donated peripheral human blood (the ligand 2-3-dicarboxypropane-1-1-diphosphonic-acid is denoted as DPD). Initially, we described the experimental methods we performed for the radiosynthesis of the 99mTc-DPD-Fe3O4, the preparation of whole blood and blood plasma samples, and their incubation conditions with 99mTc-DPD-Fe3O4. More importantly, we employed a gamma-camera apparatus for the direct imaging of the 99mTc-DPD-Fe3O4-loaded whole blood and blood plasma samples when subjected to specialized centrifugation protocols. The direct comparison of the gamma-camera data obtained at the exact same samples before and after their centrifugation enabled us to clearly identify the distribution of the 99mTc-DPD-Fe3O4 in the two components, plasma and cells, of peripheral human blood.

2.
Nanomaterials (Basel) ; 11(9)2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34578721

RESUMEN

Radiolabeled gold nanoparticles (AuNPs) have been widely used for cancer diagnosis and therapy over recent decades. In this study, we focused on the development and in vitro evaluation of four new Au nanoconjugates radiolabeled with technetium-99m (99mTc) via thiol-bearing ligands attached to the NP surface. More specifically, AuNPs of two different sizes (2 nm and 20 nm, referred to as Au(2) and Au(20), respectively) were functionalized with two bifunctional thiol ligands (referred to as L1H and L2H). The shape, size, and morphology of both bare and ligand-bearing AuNPs were characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques. In vitro cytotoxicity was assessed in 4T1 murine mammary cancer cells. The AuNPs were successfully radiolabeled with 99mTc-carbonyls at high radiochemical purity (>95%) and showed excellent in vitro stability in competition studies with cysteine and histidine. Moreover, lipophilicity studies were performed in order to determine the lipophilicity of the radiolabeled conjugates, while a hemolysis assay was performed to investigate the biocompatibility of the bare and functionalized AuNPs. We have shown that the functionalized AuNPs developed in this study lead to stable radiolabeled nanoconstructs with the potential to be applied in multimodality imaging or for in vivo tracking of drug-carrying AuNPs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA